-
Something wrong with this record ?
Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water
GL. Olsen, O. Szekely, B. Mateos, P. Kadeřávek, F. Ferrage, R. Konrat, R. Pierattelli, IC. Felli, G. Bodenhausen, D. Kurzbach, L. Frydman,
Language English Country Netherlands
Document type Journal Article
Grant support
339754
European Research Council - International
279519
European Research Council - International
801936
European Research Council - International
965/18
Israel Science Foundation
NLK
ProQuest Central
from 1997-01-01 to 1 year ago
Medline Complete (EBSCOhost)
from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 1997-01-01 to 1 year ago
- MeSH
- Humans MeSH
- Nuclear Magnetic Resonance, Biomolecular * MeSH
- Osteopontin chemistry MeSH
- Ubiquitin chemistry MeSH
- Intrinsically Disordered Proteins chemistry MeSH
- Water chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028448
- 003
- CZ-PrNML
- 005
- 20210114153908.0
- 007
- ta
- 008
- 210105s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10858-020-00301-5 $2 doi
- 035 __
- $a (PubMed)32040802
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Olsen, Gregory L $u Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria. Gregory.Olsen@univie.ac.at. Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. Gregory.Olsen@univie.ac.at.
- 245 10
- $a Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water / $c GL. Olsen, O. Szekely, B. Mateos, P. Kadeřávek, F. Ferrage, R. Konrat, R. Pierattelli, IC. Felli, G. Bodenhausen, D. Kurzbach, L. Frydman,
- 520 9_
- $a Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vnitřně neuspořádané proteiny $x chemie $7 D064267
- 650 12
- $a nukleární magnetická rezonance biomolekulární $7 D019906
- 650 _2
- $a osteopontin $x chemie $7 D053495
- 650 _2
- $a ubikvitin $x chemie $7 D025801
- 650 _2
- $a voda $x chemie $7 D014867
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Szekely, Or $u Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
- 700 1_
- $a Mateos, Borja $u Department of Structural and Computational Biology, University of Vienna, Vienna BioCenter 5, 1030, Vienna, Austria.
- 700 1_
- $a Kadeřávek, Pavel $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
- 700 1_
- $a Ferrage, Fabien $u Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
- 700 1_
- $a Konrat, Robert $u Department of Structural and Computational Biology, University of Vienna, Vienna BioCenter 5, 1030, Vienna, Austria.
- 700 1_
- $a Pierattelli, Roberta $u Magnetic Resonance Center and Department of Chemistry Ugo Schiff, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.
- 700 1_
- $a Felli, Isabella C $u Magnetic Resonance Center and Department of Chemistry Ugo Schiff, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.
- 700 1_
- $a Bodenhausen, Geoffrey $u Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
- 700 1_
- $a Kurzbach, Dennis $u Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria. Dennis.Kurzbach@univie.ac.at. Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France. Dennis.Kurzbach@univie.ac.at.
- 700 1_
- $a Frydman, Lucio $u Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
- 773 0_
- $w MED00005454 $t Journal of biomolecular NMR $x 1573-5001 $g Roč. 74, č. 2-3 (2020), s. 161-171
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32040802 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114153905 $b ABA008
- 999 __
- $a ok $b bmc $g 1608783 $s 1119628
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 74 $c 2-3 $d 161-171 $e 20200210 $i 1573-5001 $m Journal of biomolecular NMR $n J Biomol NMR $x MED00005454
- GRA __
- $a 339754 $p European Research Council $2 International
- GRA __
- $a 279519 $p European Research Council $2 International
- GRA __
- $a 801936 $p European Research Council $2 International
- GRA __
- $a 965/18 $p Israel Science Foundation
- LZP __
- $a Pubmed-20210105