Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water

GL. Olsen, O. Szekely, B. Mateos, P. Kadeřávek, F. Ferrage, R. Konrat, R. Pierattelli, IC. Felli, G. Bodenhausen, D. Kurzbach, L. Frydman,

. 2020 ; 74 (2-3) : 161-171. [pub] 20200210

Language English Country Netherlands

Document type Journal Article

Grant support
339754 European Research Council - International
279519 European Research Council - International
801936 European Research Council - International
965/18 Israel Science Foundation

E-resources Online Full text

NLK ProQuest Central from 1997-01-01 to 1 year ago
Medline Complete (EBSCOhost) from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-01-01 to 1 year ago

Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028448
003      
CZ-PrNML
005      
20210114153908.0
007      
ta
008      
210105s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10858-020-00301-5 $2 doi
035    __
$a (PubMed)32040802
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Olsen, Gregory L $u Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria. Gregory.Olsen@univie.ac.at. Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. Gregory.Olsen@univie.ac.at.
245    10
$a Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water / $c GL. Olsen, O. Szekely, B. Mateos, P. Kadeřávek, F. Ferrage, R. Konrat, R. Pierattelli, IC. Felli, G. Bodenhausen, D. Kurzbach, L. Frydman,
520    9_
$a Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).
650    _2
$a lidé $7 D006801
650    _2
$a vnitřně neuspořádané proteiny $x chemie $7 D064267
650    12
$a nukleární magnetická rezonance biomolekulární $7 D019906
650    _2
$a osteopontin $x chemie $7 D053495
650    _2
$a ubikvitin $x chemie $7 D025801
650    _2
$a voda $x chemie $7 D014867
655    _2
$a časopisecké články $7 D016428
700    1_
$a Szekely, Or $u Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
700    1_
$a Mateos, Borja $u Department of Structural and Computational Biology, University of Vienna, Vienna BioCenter 5, 1030, Vienna, Austria.
700    1_
$a Kadeřávek, Pavel $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
700    1_
$a Ferrage, Fabien $u Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
700    1_
$a Konrat, Robert $u Department of Structural and Computational Biology, University of Vienna, Vienna BioCenter 5, 1030, Vienna, Austria.
700    1_
$a Pierattelli, Roberta $u Magnetic Resonance Center and Department of Chemistry Ugo Schiff, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.
700    1_
$a Felli, Isabella C $u Magnetic Resonance Center and Department of Chemistry Ugo Schiff, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.
700    1_
$a Bodenhausen, Geoffrey $u Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
700    1_
$a Kurzbach, Dennis $u Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria. Dennis.Kurzbach@univie.ac.at. Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France. Dennis.Kurzbach@univie.ac.at.
700    1_
$a Frydman, Lucio $u Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
773    0_
$w MED00005454 $t Journal of biomolecular NMR $x 1573-5001 $g Roč. 74, č. 2-3 (2020), s. 161-171
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32040802 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114153905 $b ABA008
999    __
$a ok $b bmc $g 1608783 $s 1119628
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 74 $c 2-3 $d 161-171 $e 20200210 $i 1573-5001 $m Journal of biomolecular NMR $n J Biomol NMR $x MED00005454
GRA    __
$a 339754 $p European Research Council $2 International
GRA    __
$a 279519 $p European Research Council $2 International
GRA    __
$a 801936 $p European Research Council $2 International
GRA    __
$a 965/18 $p Israel Science Foundation
LZP    __
$a Pubmed-20210105

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...