-
Something wrong with this record ?
Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes
A. Kawala-Sterniuk, M. Podpora, M. Pelc, M. Blaszczyszyn, EJ. Gorzelanczyk, R. Martinek, S. Ozana,
Language English Country Switzerland
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems Projec
NLK
Directory of Open Access Journals
from 2001
PubMed Central
from 2003
Europe PubMed Central
from 2003
ProQuest Central
from 2001-01-01
Open Access Digital Library
from 2001-01-01
Open Access Digital Library
from 2003-01-01
Health & Medicine (ProQuest)
from 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2001
PubMed
32024267
DOI
10.3390/s20030807
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Artifacts MeSH
- Adult MeSH
- Electroencephalography methods MeSH
- Filtration MeSH
- Humans MeSH
- Young Adult MeSH
- Brain diagnostic imaging physiology MeSH
- Signal Processing, Computer-Assisted instrumentation MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
This paper covers a brief review of both the advantages and disadvantages of the implementation of various smoothing filters in the analysis of electroencephalography (EEG) data for the purpose of potential medical diagnostics. The EEG data are very prone to the occurrence of various internal and external artifacts and signal distortions. In this paper, three types of smoothing filters were compared: smooth filter, median filter and Savitzky-Golay filter. The authors of this paper compared those filters and proved their usefulness, as they made the analyzed data more legible for diagnostic purposes. The obtained results were promising, however, the studies on finding perfect filtering methods are still in progress.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028528
- 003
- CZ-PrNML
- 005
- 20210114154142.0
- 007
- ta
- 008
- 210105s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s20030807 $2 doi
- 035 __
- $a (PubMed)32024267
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Kawala-Sterniuk, Aleksandra $u Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, 45-758 Opole, Poland.
- 245 10
- $a Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes / $c A. Kawala-Sterniuk, M. Podpora, M. Pelc, M. Blaszczyszyn, EJ. Gorzelanczyk, R. Martinek, S. Ozana,
- 520 9_
- $a This paper covers a brief review of both the advantages and disadvantages of the implementation of various smoothing filters in the analysis of electroencephalography (EEG) data for the purpose of potential medical diagnostics. The EEG data are very prone to the occurrence of various internal and external artifacts and signal distortions. In this paper, three types of smoothing filters were compared: smooth filter, median filter and Savitzky-Golay filter. The authors of this paper compared those filters and proved their usefulness, as they made the analyzed data more legible for diagnostic purposes. The obtained results were promising, however, the studies on finding perfect filtering methods are still in progress.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a filtrace $7 D005374
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a počítačové zpracování signálu $x přístrojové vybavení $7 D012815
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Podpora, Michal $u Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, 45-758 Opole, Poland.
- 700 1_
- $a Pelc, Mariusz $u Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, 45-758 Opole, Poland. University of Greenwich, Department of Computing and Information Systems, SE10 9LS London, UK.
- 700 1_
- $a Blaszczyszyn, Monika $u Opole University of Technology, Faculty of Physical Education and Physiotherapy, 45-758 Opole, Poland.
- 700 1_
- $a Gorzelanczyk, Edward Jacek $u Nicolaus Copernicus University, Collegium Medicum, Department of Theoretical Basis of BioMedical Sciences and Medical Informatics, 85-067 Bydgoszcz, Poland. Kazimierz Wielki University, Institute of Philosophy, 85-092 Bydgoszcz, Poland. Babinski Specialist Psychiatric Healthcare Center, Outpatient Addiction Treatment, 91-229 Lodz, Poland. The Society for the Substitution Treatment of Addiction "Medically Assisted Recovery", 85-791 Bydgoszcz, Poland.
- 700 1_
- $a Martinek, Radek $u VSB-Technical University Ostrava, FEECS, Department of Cybernetics and Biomedical Engineering, Ostrava-Poruba 708 00, Czech Republic.
- 700 1_
- $a Ozana, Stepan $u VSB-Technical University Ostrava, FEECS, Department of Cybernetics and Biomedical Engineering, Ostrava-Poruba 708 00, Czech Republic.
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 20, č. 3 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32024267 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154139 $b ABA008
- 999 __
- $a ok $b bmc $g 1608863 $s 1119708
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 20 $c 3 $e 20200202 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- GRA __
- $a CZ.02.1.01/0.0/0.0/16_019/0000867 $p European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems Projec
- LZP __
- $a Pubmed-20210105