Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-10429S
Grantová Agentura České Republiky
GAUK 978218
GAUK
CZ.02.1.01/0.0/0.0/15_003/0000417-CUCAM
Ministerstvo Školství, Mládeže a Tělovýchovy
e-INFRA LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33435335
PubMed Central
PMC7827592
DOI
10.3390/polym13020214
PII: polym13020214
Knihovny.cz E-zdroje
- Klíčová slova
- acid-base equilibrium, ampholyte, charge regulation, coarse-grained, constant-pH, ionization, peptide, polyelectrolyte, simulation,
- Publikační typ
- časopisecké články MeSH
Peptides containing amino acids with ionisable side chains represent a typical example of weak ampholytes, that is, molecules with multiple titratable acid and base groups, which generally exhibit charge regulating properties upon changes in pH. Charged groups on an ampholyte interact electrostatically with each other, and their interaction is coupled to conformation of the (macro)molecule, resulting in a complex feedback loop. Their charge-regulating properties are primarily determined by the pKA of individual ionisable side-chains, modulated by electrostatic interactions between the charged groups. The latter is determined by the amino acid sequence in the peptide chain. In our previous work we introduced a simple coarse-grained model of a flexible peptide. We validated it against experiments, demonstrating its ability to quantitatively predict charge on various peptides in a broad range of pH. In the current work, we investigated two types of peptide sequences: diblock and alternating, each of them consisting of an equal number of amino acids with acid and base side-chains. We showed that changing the sequence while keeping the same overall composition has a profound effect on the conformation, whereas it practically does not affect total charge on the peptide. Nevertheless, the sequence significantly affects the charge state of individual groups, showing that the zero net effect on the total charge is a consequence of unexpected cancellation of effects. Furthermore, we investigated how the difference between the pKA of acid and base side chains affects the charge and conformation of the peptide, showing that it is possible to tune the charge-regulating properties by following simple guiding principles based on the pKA and on the amino acid sequence. Our current results provide a theoretical basis for understanding of the complex coupling between the ionisation and conformation in flexible polyampholytes, including synthetic polymers, biomimetic materials and biological molecules, such as intrinsically disordered proteins, whose function can be regulated by changes in the pH.
Zobrazit více v PubMed
Ikebuchi M., Kashiwagi A., Asahina T., Tanaka Y., Takagi Y., Nishio Y., Hidaka H., Kikkawa R., Shigeta Y. Effect of medium pH on glutathione redox cycle in cultured human umbilical vein endothelial cells. Metabolism. 1993;42:1121–1126. doi: 10.1016/0026-0495(93)90269-T. PubMed DOI
Ainis W.N., Boire A., Solé-Jamault V., Nicolas A., Bouhallab S., Ipsen R. Contrasting Assemblies of Oppositely Charged Proteins. Langmuir. 2019;35:9923–9933. doi: 10.1021/acs.langmuir.9b01046. PubMed DOI
Ulbrich K. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev. 2004;56:1023–1050. doi: 10.1016/j.addr.2003.10.040. PubMed DOI
Van Lente J.J., Claessens M.M.A.E., Lindhoud S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules. 2019;20:3696–3703. doi: 10.1021/acs.biomac.9b00701. PubMed DOI PMC
Freudenberg U., Atallah P., Limasale Y.D.P., Werner C. Charge-tuning of glycosaminoglycan-based hydrogels to program cytokine sequestration. Faraday Discuss. 2019;219:244–251. doi: 10.1039/C9FD00016J. PubMed DOI
Schirmer L., Chwalek K., Tsurkan M.V., Freudenberg U., Werner C. Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials. 2020;228:119557. doi: 10.1016/j.biomaterials.2019.119557. PubMed DOI
Ferrand-Drake del Castillo G., Hailes R.L.N., Adali-Kaya Z., Robson T., Dahlin A. Generic high-capacity protein capture and release by pH control. Chem. Commun. 2020;56:5889–5892. doi: 10.1039/D0CC01250E. PubMed DOI
Landsgesell J., Nová L., Rud O., Uhlík F., Sean D., Hebbeker P., Holm C., Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter. 2019;15:1155–1185. doi: 10.1039/C8SM02085J. PubMed DOI
Patrickios C.S. Polypeptide Amino Acid Composition and Isoelectric Point: 1. A Closed-Form Approximation. J. Colloid Interface Sci. 1995;175:256–260. doi: 10.1006/jcis.1995.1454. DOI
Patrickios C.S., Yamasaki E.N. Polypeptide Amino Acid Composition and Isoelectric Point II. Comparison between Experiment and Theory. Anal. Biochem. 1995;231:82–91. doi: 10.1006/abio.1995.1506. PubMed DOI
Borkovec M., Daicic J., Koper G.J.M. On the difference in ionization properties between planar interfaces and linear polyelectrolytes. Proc. Natl. Acad. Sci. USA. 1997;94:3499–3503. doi: 10.1073/pnas.94.8.3499. PubMed DOI PMC
Lund M. Electrostatic chameleons in biological systems. J. Am. Chem. Soc. 2010;132:17337–17339. doi: 10.1021/ja106480a. PubMed DOI
Lund M., Jönsson B. Charge regulation in biomolecular solution. Q. Rev. Biophys. 2013;46:265–268. doi: 10.1017/S003358351300005X. PubMed DOI
Srivastava D., Santiso E., Gubbins K., Barroso da Silva F.L. Computationally Mapping pKa Shifts Due to the Presence of a Polyelectrolyte Chain around Whey Proteins. Langmuir. 2017;33:11417–11428. doi: 10.1021/acs.langmuir.7b02271. PubMed DOI
De Vos W.M., Leermakers F.A.M., de Keizer A., Cohen Stuart M.A., Kleijn J.M. Field Theoretical Analysis of Driving Forces for the Uptake of Proteins by Like-Charged Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness. Langmuir. 2010;26:249–259. doi: 10.1021/la902079u. PubMed DOI
Avni Y., Andelman D., Podgornik R. Charge regulation with fixed and mobile charged macromolecules. Curr. Opin. Electrochem. 2019;13:70–77. doi: 10.1016/j.coelec.2018.10.014. DOI
De Vries R., Cohen Stuart M. Theory and simulations of macroion complexation. Curr. Opin. Colloid Interface Sci. 2006;11:295–301. doi: 10.1016/j.cocis.2006.09.004. DOI
Zhou H.X., Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018;118:1691–1741. doi: 10.1021/acs.chemrev.7b00305. PubMed DOI PMC
Pafiti K.S., Elladiou M., Patrickios C.S. “Inverse Polyampholyte” Hydrogels from Double-Cationic Hydrogels: Synthesis by RAFT Polymerization and Characterization. Macromolecules. 2014;47:1819–1827. doi: 10.1021/ma500084c. DOI
Constantinou A.P., Elladiou M., Patrickios C.S. Regular and Inverse Polyampholyte Hydrogels: A Detailed Comparison. Macromolecules. 2016;49:3869–3880. doi: 10.1021/acs.macromol.6b00538. DOI
Von der Lühe M., Weidner A., Dutz S., Schacher F.H. Reversible Electrostatic Adsorption of Polyelectrolytes and Bovine Serum Albumin onto Polyzwitterion-Coated Magnetic Multicore Nanoparticles: Implications for Sensing and Drug Delivery. ACS Appl. Nano Mater. 2018;1:232–244. doi: 10.1021/acsanm.7b00118. DOI
Biehl P., von der Lühe M., Schacher F.H. Reversible Adsorption of Methylene Blue as Cationic Model Cargo onto Polyzwitterionic Magnetic Nanoparticles. Macromol. Rapid Commun. 2018;39:1800017. doi: 10.1002/marc.201800017. PubMed DOI
Vrbata D., Uchman M. Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer micelles using phenylboronic ester as a sensitive block linkage. Nanoscale. 2018;10:8428–8442. doi: 10.1039/C7NR09427B. PubMed DOI
Ďorďovič V., Vojtová J., Jana S., Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym. Chem. 2019;10:5522–5533. doi: 10.1039/C9PY00938H. DOI
Du A.W., Stenzel M.H. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules. 2014;15:1097–1114. doi: 10.1021/bm500169p. PubMed DOI
Praveen K., Das S., Dhaware V., Pandey B., Mondal B., Gupta S.S. pH-Responsive “Supra-Amphiphilic” Nanoparticles Based on Homoarginine Polypeptides. ACS Appl. Bio Mater. 2019;2:4162–4172. doi: 10.1021/acsabm.9b00432. PubMed DOI
Martens A.A., Portale G., Werten M.W.T., de Vries R.J., Eggink G., Cohen Stuart M.A., de Wolf F.A. Triblock Protein Copolymers Forming Supramolecular Nanotapes and pH-Responsive Gels. Macromolecules. 2009;42:1002–1009. doi: 10.1021/ma801955q. DOI
Wang C., Wang Y., Li Y., Bodemann B., Zhao T., Ma X., Huang G., Hu Z., DeBerardinis R.J., White M.A., et al. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat. Commun. 2015;6:8524. doi: 10.1038/ncomms9524. PubMed DOI PMC
Tao W., Wang J., Parak W.J., Farokhzad O.C., Shi J. Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano. 2019;13:4876–4882. doi: 10.1021/acsnano.9b01696. PubMed DOI PMC
Uhlík F., Košovan P., Limpouchová Z., Procházka K., Borisov O.V., Leermakers F.A.M. Modeling of Ionization and Conformations of Starlike Weak Polyelectrolytes. Macromolecules. 2014;47:4004–4016. doi: 10.1021/ma500377y. DOI
Nová L., Uhlík F., Košovan P. Local pH and effective pKA of weak polyelectrolytes-insights from computer simulations. Phys. Chem. Chem. Phys. 2017;19:14376–14387. doi: 10.1039/C7CP00265C. PubMed DOI
Landsgesell J., Holm C., Smiatek J. Simulation of weak polyelectrolytes: A comparison between the constant pH and the reaction ensemble method. Eur. Phys. J. Spec. Top. 2017;226:725–736. doi: 10.1140/epjst/e2016-60324-3. DOI
Panagiotopoulos A. Charge correlation effects on ionization of weak polyelectrolytes. J. Phys. Condens. Matter. 2009;21:424113. doi: 10.1088/0953-8984/21/42/424113. PubMed DOI
Ullner M., Woodward C.E. Simulations of the titration of linear polyelectrolytes with explicit simple ions: Comparisons with screened Coulomb models and experiments. Macromolecules. 2000;33:7144–7156. doi: 10.1021/ma991056k. DOI
Ullner M., Jönsson B., Widmark P. Conformational properties and apparent dissociation constants of titrating polyelectrolytes: Monte Carlo simulation and scaling arguments. J. Chem. Phys. 1994;100:3365. doi: 10.1063/1.466378. DOI
Blanco P.M., Madurga S., Mas F., Garcés J.L. Effect of Charge Regulation and Conformational Equilibria in the Stretching Properties of Weak Polyelectrolytes. Macromolecules. 2019;52:8017–8031. doi: 10.1021/acs.macromol.9b01160. DOI
Blanco P.M., Madurga S., Narambuena C.F., Mas F., Garcés J.L. Role of Charge Regulation and Fluctuations in the Conformational and Mechanical Properties of Weak Flexible Polyelectrolytes. Polymers. 2019;11:1962. doi: 10.3390/polym11121962. PubMed DOI PMC
Blanco P.M., Madurga S., Mas F., Garcés J.L. Coupling of Charge Regulation and Conformational Equilibria in Linear Weak Polyelectrolytes: Treatment of Long-Range Interactions via Effective Short-Ranged and pH-Dependent Interaction Parameters. Polymers. 2018;10:811. doi: 10.3390/polym10080811. PubMed DOI PMC
Rathee V., Sidky H., Sikora B., Whitmer J. Explicit Ion Effects on the Charge and Conformation of Weak Polyelectrolytes. Polymers. 2019;11:183. doi: 10.3390/polym11010183. PubMed DOI PMC
Borisov O.V., Zhulina E.B., Leermakers F.A., Ballauff M., Müller A.H.E. Conformations and Solution Properties of Star-Branched Polyelectrolytes. In: Müller A.H.E., Borisov O., editors. Self Organized Nanostructures of Amphiphilic Block Copolymers I. Volume 241. Springer; Berlin/Heidelberg, Germany: 2011. pp. 1–55. Advances in Polymer Science.
Gonzalez Solveyra E., Nap R.J., Huang K., Szleifer I. Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers. 2020;12:2282. doi: 10.3390/polym12102282. PubMed DOI PMC
Katchalsky A., Gillis J. Theory of the potentiometric titration of polymeric acids. Rec. Trav. Chim. 1949;68:879. doi: 10.1002/recl.19490680912. DOI
Arnold R. The titration of polymeric acids. J. Colloid Sci. 1957;12:549–556. doi: 10.1016/0095-8522(57)90060-0. DOI
Ulrich S., Seijo M., Stoll S. A Monte Carlo Study of Weak Polyampholytes: Stiffness and Primary Structure Influences on Titration Curves and Chain Conformations. J. Phys. Chem. B. 2007;111:8459–8467. doi: 10.1021/jp0688658. PubMed DOI
Narayanan Nair A.K., Martinez Jimenez A., Sun S. Complexation behavior of polyelectrolytes and polyampholytes. J. Phys. Chem. B. 2017;121:7987–7998. doi: 10.1021/acs.jpcb.7b04582. PubMed DOI
Narayanan Nair A.K., Uyaver S., Sun S. Conformational transitions of a weak polyampholyte. J. Chem. Phys. 2014;141:134905. doi: 10.1063/1.4897161. PubMed DOI
Robinson A., Degrève L. Monte Carlo Simulation of Polyampholyte Chains. Mol. Simul. 1993;11:337–344. doi: 10.1080/08927029308022518. DOI
Stornes M., Linse P., Dias R.S. Monte Carlo Simulations of Complexation between Weak Polyelectrolytes and a Charged Nanoparticle. Influence of Polyelectrolyte Chain Length and Concentration. Macromolecules. 2017;50:5978–5988. doi: 10.1021/acs.macromol.7b00844. DOI
Ulrich S., Seijo M., Carnal F., Stoll S. Formation of Complexes between Nanoparticles and Weak Polyampholyte Chains. Monte Carlo Simulations. Macromolecules. 2011;44:1661–1670. doi: 10.1021/ma1024895. DOI
Barr S.A., Panagiotopoulos A.Z. Conformational transitions of weak polyacids grafted to nanoparticles. J. Chem. Phys. 2012;137:144704. doi: 10.1063/1.4757284. PubMed DOI
Chang L.W., Lytle T.K., Radhakrishna M., Madinya J.J., Vélez J., Sing C.E., Perry S.L. Sequence and entropy-based control of complex coacervates. Nat. Commun. 2017;8:1723. doi: 10.1038/s41467-017-01249-1. PubMed DOI PMC
Rathee V.S., Sidky H., Sikora B.J., Whitmer J.K. Role of Associative Charging in the Entropy–Energy Balance of Polyelectrolyte Complexes. J. Am. Chem. Soc. 2018;140:15319–15328. doi: 10.1021/jacs.8b08649. PubMed DOI
Rathee V.S., Zervoudakis A.J., Sidky H., Sikora B.J., Whitmer J.K. Weak polyelectrolyte complexation driven by associative charging. J. Chem. Phys. 2018;148:114901. doi: 10.1063/1.5017941. PubMed DOI
Hazra M.K., Levy Y. Charge pattern affects the structure and dynamics of polyampholyte condensates. Phys. Chem. Chem. Phys. 2020;22:19368–19375. doi: 10.1039/D0CP02764B. PubMed DOI
Danielsen S.P.O., McCarty J., Shea J.E., Delaney K.T., Fredrickson G.H. Small ion effects on self-coacervation phenomena in block polyampholytes. J. Chem. Phys. 2019;151:034904. doi: 10.1063/1.5109045. PubMed DOI PMC
Baul U., Bley M., Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules. 2020;21:3523–3538. doi: 10.1021/acs.biomac.0c00546. PubMed DOI
Zheng W., Borgia A., Buholzer K., Grishaev A., Schuler B., Best R.B. Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment. J. Am. Chem. Soc. 2016;138:11702–11713. doi: 10.1021/jacs.6b05443. PubMed DOI PMC
Soranno A., Holla A., Dingfelder F., Nettels D., Makarov D.E., Schuler B. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc. Natl. Acad. Sci. USA. 2017;114:E1833–E1839. doi: 10.1073/pnas.1616672114. PubMed DOI PMC
Lunkad R., Murmiliuk A., Hebbeker P., Boublík M., Tošner Z., Štěpánek M., Košovan P. Quantitative prediction of charge regulation in oligopeptides. Mol. Syst. Des. Eng. 2021 doi: 10.1039/D0ME00147C. DOI
Lide D.R. CRC Handbook of Chemistry and Physics. 72th ed. CRC Press; New York, NY, USA: 1991.
Weik F., Weeber R., Szuttor K., Breitsprecher K., de Graaf J., Kuron M., Landsgesell J., Menke H., Sean D., Holm C. ESPResSo 4.0—An extensible software package for simulating soft matter systems. Eur. Phys. J. Spec. Top. 2019;227:1789–1816. doi: 10.1140/epjst/e2019-800186-9. DOI
Janke W. Statistical Analysis of Simulations: Data Correlations and Error Estimation. Quantum Simulations Complex Many Body Syst. Theory Algorithms. 2002;10:423–445.
[(accessed on 10 November 2020)]; Available online: http://www.gromacs.org/
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Hass M.A., Mulder F.A. Contemporary NMR Studies of Protein Electrostatics. Annu. Rev. Biophys. 2015;44:53–75. doi: 10.1146/annurev-biophys-083012-130351. PubMed DOI
Borkovec M., Koper G.J.M. A Cluster Expansion Method for the Complete Resolution of Microscopic Ionization Equilibria from NMR Titrations. Anal. Chem. 2000;72:3272–3279. doi: 10.1021/ac991494p. PubMed DOI
Madurga S., Nedyalkova M., Mas F., Garcés J.L. Ionization and Conformational Equilibria of Citric Acid: Delocalized Proton Binding in Solution. J. Phys. Chem. A. 2017;121:5894–5906. doi: 10.1021/acs.jpca.7b05089. PubMed DOI