Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences

. 2021 Jan 09 ; 13 (2) : . [epub] 20210109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33435335

Grantová podpora
19-10429S Grantová Agentura České Republiky
GAUK 978218 GAUK
CZ.02.1.01/0.0/0.0/15_003/0000417-CUCAM Ministerstvo Školství, Mládeže a Tělovýchovy
e-INFRA LM2018140 Ministerstvo Školství, Mládeže a Tělovýchovy

Peptides containing amino acids with ionisable side chains represent a typical example of weak ampholytes, that is, molecules with multiple titratable acid and base groups, which generally exhibit charge regulating properties upon changes in pH. Charged groups on an ampholyte interact electrostatically with each other, and their interaction is coupled to conformation of the (macro)molecule, resulting in a complex feedback loop. Their charge-regulating properties are primarily determined by the pKA of individual ionisable side-chains, modulated by electrostatic interactions between the charged groups. The latter is determined by the amino acid sequence in the peptide chain. In our previous work we introduced a simple coarse-grained model of a flexible peptide. We validated it against experiments, demonstrating its ability to quantitatively predict charge on various peptides in a broad range of pH. In the current work, we investigated two types of peptide sequences: diblock and alternating, each of them consisting of an equal number of amino acids with acid and base side-chains. We showed that changing the sequence while keeping the same overall composition has a profound effect on the conformation, whereas it practically does not affect total charge on the peptide. Nevertheless, the sequence significantly affects the charge state of individual groups, showing that the zero net effect on the total charge is a consequence of unexpected cancellation of effects. Furthermore, we investigated how the difference between the pKA of acid and base side chains affects the charge and conformation of the peptide, showing that it is possible to tune the charge-regulating properties by following simple guiding principles based on the pKA and on the amino acid sequence. Our current results provide a theoretical basis for understanding of the complex coupling between the ionisation and conformation in flexible polyampholytes, including synthetic polymers, biomimetic materials and biological molecules, such as intrinsically disordered proteins, whose function can be regulated by changes in the pH.

Zobrazit více v PubMed

Ikebuchi M., Kashiwagi A., Asahina T., Tanaka Y., Takagi Y., Nishio Y., Hidaka H., Kikkawa R., Shigeta Y. Effect of medium pH on glutathione redox cycle in cultured human umbilical vein endothelial cells. Metabolism. 1993;42:1121–1126. doi: 10.1016/0026-0495(93)90269-T. PubMed DOI

Ainis W.N., Boire A., Solé-Jamault V., Nicolas A., Bouhallab S., Ipsen R. Contrasting Assemblies of Oppositely Charged Proteins. Langmuir. 2019;35:9923–9933. doi: 10.1021/acs.langmuir.9b01046. PubMed DOI

Ulbrich K. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev. 2004;56:1023–1050. doi: 10.1016/j.addr.2003.10.040. PubMed DOI

Van Lente J.J., Claessens M.M.A.E., Lindhoud S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules. 2019;20:3696–3703. doi: 10.1021/acs.biomac.9b00701. PubMed DOI PMC

Freudenberg U., Atallah P., Limasale Y.D.P., Werner C. Charge-tuning of glycosaminoglycan-based hydrogels to program cytokine sequestration. Faraday Discuss. 2019;219:244–251. doi: 10.1039/C9FD00016J. PubMed DOI

Schirmer L., Chwalek K., Tsurkan M.V., Freudenberg U., Werner C. Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials. 2020;228:119557. doi: 10.1016/j.biomaterials.2019.119557. PubMed DOI

Ferrand-Drake del Castillo G., Hailes R.L.N., Adali-Kaya Z., Robson T., Dahlin A. Generic high-capacity protein capture and release by pH control. Chem. Commun. 2020;56:5889–5892. doi: 10.1039/D0CC01250E. PubMed DOI

Landsgesell J., Nová L., Rud O., Uhlík F., Sean D., Hebbeker P., Holm C., Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter. 2019;15:1155–1185. doi: 10.1039/C8SM02085J. PubMed DOI

Patrickios C.S. Polypeptide Amino Acid Composition and Isoelectric Point: 1. A Closed-Form Approximation. J. Colloid Interface Sci. 1995;175:256–260. doi: 10.1006/jcis.1995.1454. DOI

Patrickios C.S., Yamasaki E.N. Polypeptide Amino Acid Composition and Isoelectric Point II. Comparison between Experiment and Theory. Anal. Biochem. 1995;231:82–91. doi: 10.1006/abio.1995.1506. PubMed DOI

Borkovec M., Daicic J., Koper G.J.M. On the difference in ionization properties between planar interfaces and linear polyelectrolytes. Proc. Natl. Acad. Sci. USA. 1997;94:3499–3503. doi: 10.1073/pnas.94.8.3499. PubMed DOI PMC

Lund M. Electrostatic chameleons in biological systems. J. Am. Chem. Soc. 2010;132:17337–17339. doi: 10.1021/ja106480a. PubMed DOI

Lund M., Jönsson B. Charge regulation in biomolecular solution. Q. Rev. Biophys. 2013;46:265–268. doi: 10.1017/S003358351300005X. PubMed DOI

Srivastava D., Santiso E., Gubbins K., Barroso da Silva F.L. Computationally Mapping pKa Shifts Due to the Presence of a Polyelectrolyte Chain around Whey Proteins. Langmuir. 2017;33:11417–11428. doi: 10.1021/acs.langmuir.7b02271. PubMed DOI

De Vos W.M., Leermakers F.A.M., de Keizer A., Cohen Stuart M.A., Kleijn J.M. Field Theoretical Analysis of Driving Forces for the Uptake of Proteins by Like-Charged Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness. Langmuir. 2010;26:249–259. doi: 10.1021/la902079u. PubMed DOI

Avni Y., Andelman D., Podgornik R. Charge regulation with fixed and mobile charged macromolecules. Curr. Opin. Electrochem. 2019;13:70–77. doi: 10.1016/j.coelec.2018.10.014. DOI

De Vries R., Cohen Stuart M. Theory and simulations of macroion complexation. Curr. Opin. Colloid Interface Sci. 2006;11:295–301. doi: 10.1016/j.cocis.2006.09.004. DOI

Zhou H.X., Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018;118:1691–1741. doi: 10.1021/acs.chemrev.7b00305. PubMed DOI PMC

Pafiti K.S., Elladiou M., Patrickios C.S. “Inverse Polyampholyte” Hydrogels from Double-Cationic Hydrogels: Synthesis by RAFT Polymerization and Characterization. Macromolecules. 2014;47:1819–1827. doi: 10.1021/ma500084c. DOI

Constantinou A.P., Elladiou M., Patrickios C.S. Regular and Inverse Polyampholyte Hydrogels: A Detailed Comparison. Macromolecules. 2016;49:3869–3880. doi: 10.1021/acs.macromol.6b00538. DOI

Von der Lühe M., Weidner A., Dutz S., Schacher F.H. Reversible Electrostatic Adsorption of Polyelectrolytes and Bovine Serum Albumin onto Polyzwitterion-Coated Magnetic Multicore Nanoparticles: Implications for Sensing and Drug Delivery. ACS Appl. Nano Mater. 2018;1:232–244. doi: 10.1021/acsanm.7b00118. DOI

Biehl P., von der Lühe M., Schacher F.H. Reversible Adsorption of Methylene Blue as Cationic Model Cargo onto Polyzwitterionic Magnetic Nanoparticles. Macromol. Rapid Commun. 2018;39:1800017. doi: 10.1002/marc.201800017. PubMed DOI

Vrbata D., Uchman M. Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer micelles using phenylboronic ester as a sensitive block linkage. Nanoscale. 2018;10:8428–8442. doi: 10.1039/C7NR09427B. PubMed DOI

Ďorďovič V., Vojtová J., Jana S., Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym. Chem. 2019;10:5522–5533. doi: 10.1039/C9PY00938H. DOI

Du A.W., Stenzel M.H. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules. 2014;15:1097–1114. doi: 10.1021/bm500169p. PubMed DOI

Praveen K., Das S., Dhaware V., Pandey B., Mondal B., Gupta S.S. pH-Responsive “Supra-Amphiphilic” Nanoparticles Based on Homoarginine Polypeptides. ACS Appl. Bio Mater. 2019;2:4162–4172. doi: 10.1021/acsabm.9b00432. PubMed DOI

Martens A.A., Portale G., Werten M.W.T., de Vries R.J., Eggink G., Cohen Stuart M.A., de Wolf F.A. Triblock Protein Copolymers Forming Supramolecular Nanotapes and pH-Responsive Gels. Macromolecules. 2009;42:1002–1009. doi: 10.1021/ma801955q. DOI

Wang C., Wang Y., Li Y., Bodemann B., Zhao T., Ma X., Huang G., Hu Z., DeBerardinis R.J., White M.A., et al. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat. Commun. 2015;6:8524. doi: 10.1038/ncomms9524. PubMed DOI PMC

Tao W., Wang J., Parak W.J., Farokhzad O.C., Shi J. Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano. 2019;13:4876–4882. doi: 10.1021/acsnano.9b01696. PubMed DOI PMC

Uhlík F., Košovan P., Limpouchová Z., Procházka K., Borisov O.V., Leermakers F.A.M. Modeling of Ionization and Conformations of Starlike Weak Polyelectrolytes. Macromolecules. 2014;47:4004–4016. doi: 10.1021/ma500377y. DOI

Nová L., Uhlík F., Košovan P. Local pH and effective pKA of weak polyelectrolytes-insights from computer simulations. Phys. Chem. Chem. Phys. 2017;19:14376–14387. doi: 10.1039/C7CP00265C. PubMed DOI

Landsgesell J., Holm C., Smiatek J. Simulation of weak polyelectrolytes: A comparison between the constant pH and the reaction ensemble method. Eur. Phys. J. Spec. Top. 2017;226:725–736. doi: 10.1140/epjst/e2016-60324-3. DOI

Panagiotopoulos A. Charge correlation effects on ionization of weak polyelectrolytes. J. Phys. Condens. Matter. 2009;21:424113. doi: 10.1088/0953-8984/21/42/424113. PubMed DOI

Ullner M., Woodward C.E. Simulations of the titration of linear polyelectrolytes with explicit simple ions: Comparisons with screened Coulomb models and experiments. Macromolecules. 2000;33:7144–7156. doi: 10.1021/ma991056k. DOI

Ullner M., Jönsson B., Widmark P. Conformational properties and apparent dissociation constants of titrating polyelectrolytes: Monte Carlo simulation and scaling arguments. J. Chem. Phys. 1994;100:3365. doi: 10.1063/1.466378. DOI

Blanco P.M., Madurga S., Mas F., Garcés J.L. Effect of Charge Regulation and Conformational Equilibria in the Stretching Properties of Weak Polyelectrolytes. Macromolecules. 2019;52:8017–8031. doi: 10.1021/acs.macromol.9b01160. DOI

Blanco P.M., Madurga S., Narambuena C.F., Mas F., Garcés J.L. Role of Charge Regulation and Fluctuations in the Conformational and Mechanical Properties of Weak Flexible Polyelectrolytes. Polymers. 2019;11:1962. doi: 10.3390/polym11121962. PubMed DOI PMC

Blanco P.M., Madurga S., Mas F., Garcés J.L. Coupling of Charge Regulation and Conformational Equilibria in Linear Weak Polyelectrolytes: Treatment of Long-Range Interactions via Effective Short-Ranged and pH-Dependent Interaction Parameters. Polymers. 2018;10:811. doi: 10.3390/polym10080811. PubMed DOI PMC

Rathee V., Sidky H., Sikora B., Whitmer J. Explicit Ion Effects on the Charge and Conformation of Weak Polyelectrolytes. Polymers. 2019;11:183. doi: 10.3390/polym11010183. PubMed DOI PMC

Borisov O.V., Zhulina E.B., Leermakers F.A., Ballauff M., Müller A.H.E. Conformations and Solution Properties of Star-Branched Polyelectrolytes. In: Müller A.H.E., Borisov O., editors. Self Organized Nanostructures of Amphiphilic Block Copolymers I. Volume 241. Springer; Berlin/Heidelberg, Germany: 2011. pp. 1–55. Advances in Polymer Science.

Gonzalez Solveyra E., Nap R.J., Huang K., Szleifer I. Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers. 2020;12:2282. doi: 10.3390/polym12102282. PubMed DOI PMC

Katchalsky A., Gillis J. Theory of the potentiometric titration of polymeric acids. Rec. Trav. Chim. 1949;68:879. doi: 10.1002/recl.19490680912. DOI

Arnold R. The titration of polymeric acids. J. Colloid Sci. 1957;12:549–556. doi: 10.1016/0095-8522(57)90060-0. DOI

Ulrich S., Seijo M., Stoll S. A Monte Carlo Study of Weak Polyampholytes: Stiffness and Primary Structure Influences on Titration Curves and Chain Conformations. J. Phys. Chem. B. 2007;111:8459–8467. doi: 10.1021/jp0688658. PubMed DOI

Narayanan Nair A.K., Martinez Jimenez A., Sun S. Complexation behavior of polyelectrolytes and polyampholytes. J. Phys. Chem. B. 2017;121:7987–7998. doi: 10.1021/acs.jpcb.7b04582. PubMed DOI

Narayanan Nair A.K., Uyaver S., Sun S. Conformational transitions of a weak polyampholyte. J. Chem. Phys. 2014;141:134905. doi: 10.1063/1.4897161. PubMed DOI

Robinson A., Degrève L. Monte Carlo Simulation of Polyampholyte Chains. Mol. Simul. 1993;11:337–344. doi: 10.1080/08927029308022518. DOI

Stornes M., Linse P., Dias R.S. Monte Carlo Simulations of Complexation between Weak Polyelectrolytes and a Charged Nanoparticle. Influence of Polyelectrolyte Chain Length and Concentration. Macromolecules. 2017;50:5978–5988. doi: 10.1021/acs.macromol.7b00844. DOI

Ulrich S., Seijo M., Carnal F., Stoll S. Formation of Complexes between Nanoparticles and Weak Polyampholyte Chains. Monte Carlo Simulations. Macromolecules. 2011;44:1661–1670. doi: 10.1021/ma1024895. DOI

Barr S.A., Panagiotopoulos A.Z. Conformational transitions of weak polyacids grafted to nanoparticles. J. Chem. Phys. 2012;137:144704. doi: 10.1063/1.4757284. PubMed DOI

Chang L.W., Lytle T.K., Radhakrishna M., Madinya J.J., Vélez J., Sing C.E., Perry S.L. Sequence and entropy-based control of complex coacervates. Nat. Commun. 2017;8:1723. doi: 10.1038/s41467-017-01249-1. PubMed DOI PMC

Rathee V.S., Sidky H., Sikora B.J., Whitmer J.K. Role of Associative Charging in the Entropy–Energy Balance of Polyelectrolyte Complexes. J. Am. Chem. Soc. 2018;140:15319–15328. doi: 10.1021/jacs.8b08649. PubMed DOI

Rathee V.S., Zervoudakis A.J., Sidky H., Sikora B.J., Whitmer J.K. Weak polyelectrolyte complexation driven by associative charging. J. Chem. Phys. 2018;148:114901. doi: 10.1063/1.5017941. PubMed DOI

Hazra M.K., Levy Y. Charge pattern affects the structure and dynamics of polyampholyte condensates. Phys. Chem. Chem. Phys. 2020;22:19368–19375. doi: 10.1039/D0CP02764B. PubMed DOI

Danielsen S.P.O., McCarty J., Shea J.E., Delaney K.T., Fredrickson G.H. Small ion effects on self-coacervation phenomena in block polyampholytes. J. Chem. Phys. 2019;151:034904. doi: 10.1063/1.5109045. PubMed DOI PMC

Baul U., Bley M., Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules. 2020;21:3523–3538. doi: 10.1021/acs.biomac.0c00546. PubMed DOI

Zheng W., Borgia A., Buholzer K., Grishaev A., Schuler B., Best R.B. Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment. J. Am. Chem. Soc. 2016;138:11702–11713. doi: 10.1021/jacs.6b05443. PubMed DOI PMC

Soranno A., Holla A., Dingfelder F., Nettels D., Makarov D.E., Schuler B. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc. Natl. Acad. Sci. USA. 2017;114:E1833–E1839. doi: 10.1073/pnas.1616672114. PubMed DOI PMC

Lunkad R., Murmiliuk A., Hebbeker P., Boublík M., Tošner Z., Štěpánek M., Košovan P. Quantitative prediction of charge regulation in oligopeptides. Mol. Syst. Des. Eng. 2021 doi: 10.1039/D0ME00147C. DOI

Lide D.R. CRC Handbook of Chemistry and Physics. 72th ed. CRC Press; New York, NY, USA: 1991.

Weik F., Weeber R., Szuttor K., Breitsprecher K., de Graaf J., Kuron M., Landsgesell J., Menke H., Sean D., Holm C. ESPResSo 4.0—An extensible software package for simulating soft matter systems. Eur. Phys. J. Spec. Top. 2019;227:1789–1816. doi: 10.1140/epjst/e2019-800186-9. DOI

Janke W. Statistical Analysis of Simulations: Data Correlations and Error Estimation. Quantum Simulations Complex Many Body Syst. Theory Algorithms. 2002;10:423–445.

[(accessed on 10 November 2020)]; Available online: http://www.gromacs.org/

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Hass M.A., Mulder F.A. Contemporary NMR Studies of Protein Electrostatics. Annu. Rev. Biophys. 2015;44:53–75. doi: 10.1146/annurev-biophys-083012-130351. PubMed DOI

Borkovec M., Koper G.J.M. A Cluster Expansion Method for the Complete Resolution of Microscopic Ionization Equilibria from NMR Titrations. Anal. Chem. 2000;72:3272–3279. doi: 10.1021/ac991494p. PubMed DOI

Madurga S., Nedyalkova M., Mas F., Garcés J.L. Ionization and Conformational Equilibria of Citric Acid: Delocalized Proton Binding in Solution. J. Phys. Chem. A. 2017;121:5894–5906. doi: 10.1021/acs.jpca.7b05089. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...