Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38370910
PubMed Central
PMC10867894
DOI
10.1021/acs.macromol.3c01209
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.
Faculty of Physics University of Vienna Boltzmanngasse 5 1090 Vienna Austria
Vienna Doctoral School in Physics University of Vienna Boltzmanngasse 5 1090 Vienna Austria
Zobrazit více v PubMed
Muthukumar M. 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions. Macromolecules 2017, 50, 9528–9560. 10.1021/acs.macromol.7b01929. PubMed DOI PMC
Gucht J. v. d.; Spruijt E.; Lemmers M.; Cohen Stuart M. A. Polyelectrolyte complexes: Bulk phases and colloidal systems. J. Colloid Interface Sci. 2011, 361, 407–422. 10.1016/j.jcis.2011.05.080. PubMed DOI
Tiebackx F. W. Gleichzeitige Ausflockung zweier Kolloide. Z. Chem. Ind. Kolloide 1911, 8, 198–201. 10.1007/BF01503532. DOI
Overbeek J. T. G.; Voorn M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 1957, 49, 7–26. 10.1002/jcp.1030490404. PubMed DOI
Sing C. E.; Perry S. L. Recent progress in the science of complex coacervation. Soft Matter 2020, 16, 2885–2914. 10.1039/D0SM00001A. PubMed DOI
Rumyantsev A. M.; Jackson N. E.; de Pablo J. J. Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers. Annu. Rev. Condens. Matter Phys. 2021, 12, 155–176. 10.1146/annurev-conmatphys-042020-113457. DOI
Wasilewski T. Coacervates as a Modern Delivery System of Hand Dishwashing Liquids. J. Surfactants Deterg. 2010, 13, 513–520. 10.1007/s11743-010-1189-4. DOI
Schmitt C.; Turgeon S. L. Protein/polysaccharide complexes and coacervates in food systems. Adv. Colloid Interface Sci. 2011, 167, 63–70. 10.1016/j.cis.2010.10.001. PubMed DOI
Gruber D.; Ruiz-Agudo C.; Cölfen H. Cationic Coacervates: Novel Phosphate Ionic Reservoir for the Mineralization of Calcium Phosphates. ACS Biomater. Sci. Eng. 2023, 9, 1791–1795. 10.1021/acsbiomaterials.1c01090. PubMed DOI
Insua I.; Wilkinson A.; Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur. Polym. J. 2016, 81, 198–215. 10.1016/j.eurpolymj.2016.06.003. PubMed DOI PMC
Margossian K. O.; Brown M. U.; Emrick T.; Muthukumar M. Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms. Nat. Commun. 2022, 13, 2250.10.1038/s41467-022-29851-y. PubMed DOI PMC
Blocher W. C.; Perry S. L. Complex coacervate-based materials for biomedicine. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, e144210.1002/wnan.1442. PubMed DOI
Bediako J. K.; Kang J.-H.; Yun Y.-S.; Choi S.-H. Facile Processing of Polyelectrolyte Complexes for Immobilization of Heavy Metal Ions in Wastewater. ACS Appl. Polym. Mater. 2022, 4, 2346–2354. 10.1021/acsapm.1c01634. DOI
Valley B.; Jing B.; Ferreira M.; Zhu Y. Rapid and Efficient Coacervate Extraction of Cationic Industrial Dyes from Wastewater. ACS Appl. Mater. Interfaces 2019, 11, 7472–7478. 10.1021/acsami.8b21674. PubMed DOI
Zhang Z.; Liu Q.; Sun Z.; Phillips B. K.; Wang Z.; Al-Hashimi M.; Fang L.; Olson M. A. Poly-Lipoic Ester-Based Coacervates for the Efficient Removal of Organic Pollutants from Water and Increased Point-of-Use Versatility. Chem. Mater. 2019, 31, 4405–4417. 10.1021/acs.chemmater.9b00725. DOI
Sproncken C. C. M.; Gumí-Audenis B.; Foroutanparsa S.; Magana J. R.; Voets I. K. Controlling the Formation of Polyelectrolyte Complex Nanoparticles Using Programmable pH Reactions. Macromolecules 2023, 56, 226–233. 10.1021/acs.macromol.2c01431. PubMed DOI PMC
Huang Y.; Lawrence P. G.; Lapitsky Y. Self-Assembly of Stiff, Adhesive and Self-Healing Gels from Common Polyelectrolytes. Langmuir 2014, 30, 7771–7777. 10.1021/la404606y. PubMed DOI
Yang M.; Digby Z. A.; Chen Y.; Schlenoff J. B. Valence-induced jumps in coacervate properties. Sci. Adv. 2022, 8, eabm478310.1126/sciadv.abm4783. PubMed DOI PMC
Lemmers M.; Spruijt E.; Akerboom S.; Voets I. K.; van Aelst A. C.; Cohen Stuart M. A.; van der Gucht J. Physical Gels Based on Charge-Driven Bridging of Nanoparticles by Triblock Copolymers. Langmuir 2012, 28, 12311–12318. 10.1021/la301917e. PubMed DOI
Voets I. K.; de Keizer A.; Cohen Stuart M. A. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009, 147–148, 300–318. 10.1016/j.cis.2008.09.012. PubMed DOI
Lemmers M.; Sprakel J.; Voets I. K.; van der Gucht J.; Cohen Stuart M. Multiresponsive Reversible Gels Based on Charge-Driven Assembly. Angew. Chem., Int. Ed. 2010, 49, 708–711. 10.1002/anie.200905515. PubMed DOI
Gao; Holkar; Srivastava Protein-Polyelectrolyte Complexes and Micellar Assemblies. Polymers 2019, 11, 1097.10.3390/polym11071097. PubMed DOI PMC
Water J. J.; Schack M. M.; Velazquez-Campoy A.; Maltesen M. J.; van de Weert M.; Jorgensen L. Complex coacervates of hyaluronic acid and lysozyme: Effect on protein structure and physical stability. Eur. J. Pharm. Biopharm. 2014, 88, 325–331. 10.1016/j.ejpb.2014.09.001. PubMed DOI
Kayitmazer A. B.; Seeman D.; Minsky B. B.; Dubin P. L.; Xu Y. Protein–polyelectrolyte interactions. Soft Matter 2013, 9, 2553–2583. 10.1039/c2sm27002a. DOI
Hyman A. A.; Weber C. A.; Jülicher F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. 10.1146/annurev-cellbio-100913-013325. PubMed DOI
Lin Y.; McCarty J.; Rauch J. N.; Delaney K. T.; Kosik K. S.; Fredrickson G. H.; Shea J.-E.; Han S. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 2019, 8, e4257110.7554/eLife.42571. PubMed DOI PMC
Aumiller W. M.; Keating C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 2016, 8, 129–137. 10.1038/nchem.2414. PubMed DOI
Zhu J.; Jiang L. Liquid–Liquid Phase Separation Bridges Physics, Chemistry, and Biology. Langmuir 2022, 38, 9043–9049. 10.1021/acs.langmuir.2c01358. PubMed DOI
Jacobs M. I.; Jira E. R.; Schroeder C. M. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity. Langmuir 2021, 37, 14323–14335. 10.1021/acs.langmuir.1c02231. PubMed DOI
McCall P. M.; Srivastava S.; Perry S. L.; Kovar D. R.; Gardel M. L.; Tirrell M. V. Partitioning and Enhanced Self-Assembly of Actin in Polypeptide Coacervates. Biophys. J. 2018, 114, 1636–1645. 10.1016/j.bpj.2018.02.020. PubMed DOI PMC
Martin N.; Li M.; Mann S. Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. Langmuir 2016, 32, 5881–5889. 10.1021/acs.langmuir.6b01271. PubMed DOI
Lindhoud S.; Claessens M. M. A. E. Accumulation of small protein molecules in a macroscopic complex coacervate. Soft Matter 2016, 12, 408–413. 10.1039/C5SM02386F. PubMed DOI
Blocher McTigue W. C.; Perry S. L. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. Small 2020, 16, 1907671.10.1002/smll.201907671. PubMed DOI
Zhang Y.; Han K.; Lu D.; Liu Z. Reversible encapsulation of lysozyme within mPEG-b-PMAA: experimental observation and molecular dynamics simulation. Soft Matter 2013, 9, 8723–8729. 10.1039/c3sm50586c. DOI
Zhao M.; Zacharia N. S. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation. J. Chem. Phys. 2018, 149, 163326.10.1063/1.5040346. PubMed DOI
Xu Y.; Mazzawi M.; Chen K.; Sun L.; Dubin P. L. Protein Purification by Polyelectrolyte Coacervation: Influence of Protein Charge Anisotropy on Selectivity. Biomacromolecules 2011, 12, 1512–1522. 10.1021/bm101465y. PubMed DOI
Blocher McTigue W. C.; Perry S. L. Design rules for encapsulating proteins into complex coacervates. Soft Matter 2019, 15, 3089–3103. 10.1039/C9SM00372J. PubMed DOI
Kapelner R. A.; Obermeyer A. C. Ionic polypeptide tags for protein phase separation. Chem. Sci. 2019, 10, 2700–2707. 10.1039/C8SC04253E. PubMed DOI PMC
Obermeyer A. C.; Mills C. E.; Dong X.-H.; Flores R. J.; Olsen B. D. Complex coacervation of supercharged proteins with polyelectrolytes. Soft Matter 2016, 12, 3570–3581. 10.1039/C6SM00002A. PubMed DOI
van Lente J.; Pazos Urrea M.; Brouwer T.; Schuur B.; Lindhoud S. Complex coacervates as extraction media. Green Chem. 2021, 23, 5812–5824. 10.1039/D1GC01880A. PubMed DOI PMC
Black K. A.; Priftis D.; Perry S. L.; Yip J.; Byun W. Y.; Tirrell M. Protein Encapsulation via Polypeptide Complex Coacervation. ACS Macro Lett. 2014, 3, 1088–1091. 10.1021/mz500529v. PubMed DOI
van Lente J. J.; Claessens M. M. A. E.; Lindhoud S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules 2019, 20, 3696–3703. 10.1021/acs.biomac.9b00701. PubMed DOI PMC
Spruijt E.; Westphal A. H.; Borst J. W.; Cohen Stuart M. A.; van der Gucht J. Binodal Compositions of Polyelectrolyte Complexes. Macromolecules 2010, 43, 6476–6484. 10.1021/ma101031t. DOI
Chollakup R.; Smitthipong W.; Eisenbach C. D.; Tirrell M. Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)-Poly(allylamine) Solutions. Macromolecules 2010, 43, 2518–2528. 10.1021/ma902144k. DOI
Chollakup R.; Beck J. B.; Dirnberger K.; Tirrell M.; Eisenbach C. D. Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride. Macromolecules 2013, 46, 2376–2390. 10.1021/ma202172q. DOI
Priftis D.; Tirrell M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 2012, 8, 9396–9405. 10.1039/C2SM25604E. DOI
Li L.; Srivastava S.; Meng S.; Ting J. M.; Tirrell M. V. Effects of Non-Electrostatic Intermolecular Interactions on the Phase Behavior of pH-Sensitive Polyelectrolyte Complexes. Macromolecules 2020, 53, 7835–7844. 10.1021/acs.macromol.0c00999. DOI
Schröder P.; Cord-Landwehr S.; Schönhoff M.; Cramer C. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration. Biomacromolecules 2023, 24, 1194–1208. 10.1021/acs.biomac.2c01255. PubMed DOI
Chang L.-W.; Lytle T. K.; Radhakrishna M.; Madinya J. J.; Vélez J.; Sing C. E.; Perry S. L. Sequence and entropy-based control of complex coacervates. Nat. Commun. 2017, 8, 1273.10.1038/s41467-017-01249-1. PubMed DOI PMC
Priftis D.; Laugel N.; Tirrell M. Thermodynamic Characterization of Polypeptide Complex Coacervation. Langmuir 2012, 28, 15947–15957. 10.1021/la302729r. PubMed DOI
Fu J.; Schlenoff J. B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138, 980–990. 10.1021/jacs.5b11878. PubMed DOI
Wang Q.; Schlenoff J. B. The Polyelectrolyte Complex/Coacervate Continuum. Macromolecules 2014, 47, 3108–3116. 10.1021/ma500500q. DOI
Meng S.; Ting J. M.; Wu H.; Tirrell M. V. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes. Macromolecules 2020, 53, 7944–7953. 10.1021/acs.macromol.0c00930. DOI
Liu Y.; Momani B.; Winter H. H.; Perry S. L. Rheological characterization of liquid-to-solid transitions in bulk polyelectrolyte complexes. Soft Matter 2017, 13, 7332–7340. 10.1039/C7SM01285C. PubMed DOI
Chen Y.; Yang M.; Shaheen S. A.; Schlenoff J. B. Influence of Nonstoichiometry on the Viscoelastic Properties of a Polyelectrolyte Complex. Macromolecules 2021, 54, 7890–7899. 10.1021/acs.macromol.1c01154. DOI
Tirrell M. Polyelectrolyte Complexes: Fluid or Solid?. ACS Cent. Sci. 2018, 4, 532–533. 10.1021/acscentsci.8b00284. PubMed DOI PMC
Huang J.; Morin F. J.; Laaser J. E. Charge-Density-Dominated Phase Behavior and Viscoelasticity of Polyelectrolyte Complex Coacervates. Macromolecules 2019, 52, 4957–4967. 10.1021/acs.macromol.9b00036. DOI
Qin J.; Priftis D.; Farina R.; Perry S. L.; Leon L.; Whitmer J.; Hoffmann K.; Tirrell M.; de Pablo J. J. Interfacial Tension of Polyelectrolyte Complex Coacervate Phases. ACS Macro Lett. 2014, 3, 565–568. 10.1021/mz500190w. PubMed DOI
Audus D. J.; Ali S.; Rumyantsev A. M.; Ma Y.; de Pablo J. J.; Prabhu V. M. Molecular Mass Dependence of Interfacial Tension in Complex Coacervation. Phys. Rev. Lett. 2021, 126, 237801.10.1103/PhysRevLett.126.237801. PubMed DOI PMC
Sing C. E. Development of the modern theory of polymeric complex coacervation. Adv. Colloid Interface Sci. 2017, 239, 2–16. 10.1016/j.cis.2016.04.004. PubMed DOI
Rubinstein M.; Liao Q.; Panyukov S. Structure of Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes. Macromolecules 2018, 51, 9572–9588. 10.1021/acs.macromol.8b02059. PubMed DOI PMC
Rumyantsev A. M.; Zhulina E. B.; Borisov O. V. Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States. Macromolecules 2018, 51, 3788–3801. 10.1021/acs.macromol.8b00342. DOI
Castelnovo M.; Joanny J.-F. Eur. Phys. J. E: Soft Matter Biol. Phys. 2001, 6, 377–386. 10.1007/s10189-001-8051-7. DOI
Salehi A.; Larson R. G. A Molecular Thermodynamic Model of Complexation in Mixtures of Oppositely Charged Polyelectrolytes with Explicit Account of Charge Association/Dissociation. Macromolecules 2016, 49, 9706–9719. 10.1021/acs.macromol.6b01464. DOI
Kumari S.; Dwivedi S.; Podgornik R. On the nature of screening in Voorn–Overbeek type theories. J. Chem. Phys. 2022, 156, 244901.10.1063/5.0091721. PubMed DOI
Zhang P.; Alsaifi N. M.; Wu J.; Wang Z.-G. Polyelectrolyte complex coacervation: Effects of concentration asymmetry. J. Chem. Phys. 2018, 149, 163303.10.1063/1.5028524. PubMed DOI
Zhang P.; Shen K.; Alsaifi N. M.; Wang Z.-G. Salt Partitioning in Complex Coacervation of Symmetric Polyelectrolytes. Macromolecules 2018, 51, 5586–5593. 10.1021/acs.macromol.8b00726. DOI
Adhikari S.; Leaf M. A.; Muthukumar M. Polyelectrolyte complex coacervation by electrostatic dipolar interactions. J. Chem. Phys. 2018, 149, 163308.10.1063/1.5029268. PubMed DOI
Zhang P.; Wang Z.-G. Interfacial Structure and Tension of Polyelectrolyte Complex Coacervates. Macromolecules 2021, 54, 10994–11007. 10.1021/acs.macromol.1c01809. DOI
Sayko R.; Tian Y.; Liang H.; Dobrynin A. V. Charged Polymers: From Polyelectrolyte Solutions to Polyelectrolyte Complexes. Macromolecules 2021, 54, 7183–7192. 10.1021/acs.macromol.1c01171. DOI
Delaney K. T.; Fredrickson G. H. Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates. J. Chem. Phys. 2017, 146, 224902.10.1063/1.4985568. PubMed DOI
Lytle T. K.; Sing C. E. Transfer matrix theory of polymer complex coacervation. Soft Matter 2017, 13, 7001–7012. 10.1039/C7SM01080J. PubMed DOI
Lytle T. K.; Sing C. E. Tuning chain interaction entropy in complex coacervation using polymer stiffness, architecture, and salt valency. Mol. Syst. Des. Eng. 2018, 3, 183–196. 10.1039/C7ME00108H. DOI
Lytle T. K.; Chang L.-W.; Markiewicz N.; Perry S. L.; Sing C. E. Designing Electrostatic Interactions via Polyelectrolyte Monomer Sequence. ACS Cent. Sci. 2019, 5, 709–718. 10.1021/acscentsci.9b00087. PubMed DOI PMC
Qin J.; de Pablo J. J. Criticality and Connectivity in Macromolecular Charge Complexation. Macromolecules 2016, 49, 8789–8800. 10.1021/acs.macromol.6b02113. DOI
Zhang R.; Shklovskii B. Phase diagram of solution of oppositely charged polyelectrolytes. Phys. A 2005, 352, 216–238. 10.1016/j.physa.2004.12.037. DOI
Perry S. L.; Sing C. E. PRISM-Based Theory of Complex Coacervation: Excluded Volume versus Chain Correlation. Macromolecules 2015, 48, 5040–5053. 10.1021/acs.macromol.5b01027. DOI
Radhakrishna M.; Basu K.; Liu Y.; Shamsi R.; Perry S. L.; Sing C. E. Molecular Connectivity and Correlation Effects on Polymer Coacervation. Macromolecules 2017, 50, 3030–3037. 10.1021/acs.macromol.6b02582. DOI
Yang M.; Sonawane S. L.; Digby Z. A.; Park J. G.; Schlenoff J. B. Influence of “Hydrophobicity” on the Composition and Dynamics of Polyelectrolyte Complex Coacervates. Macromolecules 2022, 55, 7594–7604. 10.1021/acs.macromol.2c00267. DOI
Kim S.; Lee M.; Lee W. B.; Choi S.-H. Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules 2021, 54, 7572–7581. 10.1021/acs.macromol.1c00216. DOI
Fu J.; Fares H. M.; Schlenoff J. B. Ion-Pairing Strength in Polyelectrolyte Complexes. Macromolecules 2017, 50, 1066–1074. 10.1021/acs.macromol.6b02445. DOI
Li L.; Rumyantsev A. M.; Srivastava S.; Meng S.; de Pablo J. J.; Tirrell M. V. Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. Macromolecules 2021, 54, 105–114. 10.1021/acs.macromol.0c01000. DOI
Perry S. L.; Li Y.; Priftis D.; Leon L.; Tirrell M. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes. Polymers 2014, 6, 1756–1772. 10.3390/polym6061756. DOI
Schlenoff J. B.; Yang M.; Digby Z. A.; Wang Q. Ion Content of Polyelectrolyte Complex Coacervates and the Donnan Equilibrium. Macromolecules 2019, 52, 9149–9159. 10.1021/acs.macromol.9b01755. DOI
Meng S.; Liu Y.; Yeo J.; Ting J. M.; Tirrell M. V. Effect of mixed solvents on polyelectrolyte complexes with salt. Colloid Polym. Sci. 2020, 298, 887–894. 10.1007/s00396-020-04637-0. DOI
Li L.; Srivastava S.; Andreev M.; Marciel A. B.; de Pablo J. J.; Tirrell M. V. Phase Behavior and Salt Partitioning in Polyelectrolyte Complex Coacervates. Macromolecules 2018, 51, 2988–2995. 10.1021/acs.macromol.8b00238. DOI
Dautzenberg H.; Kriz J. Response of Polyelectrolyte Complexes to Subsequent Addition of Salts with Different Cations. Langmuir 2003, 19, 5204–5211. 10.1021/la0209482. DOI
Iyer D.; Syed V. M. S.; Srivastava S. Influence of divalent ions on composition and viscoelasticity of polyelectrolyte complexes. J. Polym. Sci. 2021, 59, 2895–2904. 10.1002/pol.20210668. DOI
Huang S.; Zhao M.; Dawadi M. B.; Cai Y.; Lapitsky Y.; Modarelli D. A.; Zacharia N. S. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate). J. Colloid Interface Sci. 2018, 518, 216–224. 10.1016/j.jcis.2018.02.029. PubMed DOI
van Lente J. J.; Lindhoud S. Extraction of Lysozyme from Chicken Albumen Using Polyelectrolyte Complexes. Small 2022, 18, 2105147.10.1002/smll.202105147. PubMed DOI
Choi S.; Knoerdel A. R.; Sing C. E.; Keating C. D. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule. J. Phys. Chem. B 2023, 127, 5978–5991. 10.1021/acs.jpcb.3c02098. PubMed DOI
Landsgesell J.; Nova L.; Rud O.; Uhlik F.; Sean D.; Hebbeker P.; Holm C.; Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter 2019, 15, 1155–1185. 10.1039/C8SM02085J. PubMed DOI
Gartner T. E. I.; Jayaraman A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. 10.1021/acs.macromol.8b01836. DOI
Ou Z.; Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J. Chem. Phys. 2006, 124, 154902.10.1063/1.2178803. PubMed DOI
Singh A. N.; Yethiraj A. Driving Force for the Complexation of Charged Polypeptides. J. Phys. Chem. B 2020, 124, 1285–1292. 10.1021/acs.jpcb.9b09553. PubMed DOI
Rathee V. S.; Sidky H.; Sikora B. J.; Whitmer J. K. Role of Associative Charging in the Entropy–Energy Balance of Polyelectrolyte Complexes. J. Am. Chem. Soc. 2018, 140, 15319–15328. 10.1021/jacs.8b08649. PubMed DOI
Chen S.; Zhang P.; Wang Z.-G. Complexation between Oppositely Charged Polyelectrolytes in Dilute Solution: Effects of Charge Asymmetry. Macromolecules 2022, 55, 3898–3909. 10.1021/acs.macromol.2c00339. DOI
Tsanai M.; Frederix P. J. M.; Schroer C. F. E.; Souza P. C. T.; Marrink S. J. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chem. Sci. 2021, 12, 8521–8530. 10.1039/D1SC00374G. PubMed DOI PMC
Shakya A.; Girard M.; King J. T.; Olvera de la Cruz M. Role of Chain Flexibility in Asymmetric Polyelectrolyte Complexation in Salt Solutions. Macromolecules 2020, 53, 1258–1269. 10.1021/acs.macromol.9b02355. DOI
Bobbili S. V.; Milner S. T. Closed-Loop Phase Behavior of Nonstoichiometric Coacervates in Coarse-Grained Simulations. Macromolecules 2022, 55, 511–516. 10.1021/acs.macromol.1c02115. DOI
Andreev M.; Prabhu V. M.; Douglas J. F.; Tirrell M.; de Pablo J. J. Complex Coacervation in Polyelectrolytes from a Coarse-Grained Model. Macromolecules 2018, 51, 6717–6723. 10.1021/acs.macromol.8b00556. PubMed DOI PMC
Liang H.; de Pablo J. J. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022, 55, 4146–4158. 10.1021/acs.macromol.2c00246. DOI
Panagiotopoulos A. Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 1987, 61, 813–826. 10.1080/00268978700101491. DOI
Knoerdel A. R.; Blocher McTigue W. C.; Sing C. E. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. J. Phys. Chem. B 2021, 125, 8965–8980. 10.1021/acs.jpcb.1c03065. PubMed DOI
Zheng B.; Avni Y.; Andelman D.; Podgornik R. Phase Separation of Polyelectrolytes: The Effect of Charge Regulation. J. Phys. Chem. B 2021, 125, 7863–7870. 10.1021/acs.jpcb.1c01986. PubMed DOI PMC
Landsgesell J.; Hebbeker P.; Rud O.; Lunkad R.; Košovan P.; Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2020, 53, 3007–3020. 10.1021/acs.macromol.0c00260. DOI
Beyer D.; Holm C. A generalized grand-reaction method for modeling the exchange of weak (polyprotic) acids between a solution and a weak polyelectrolyte phase. J. Chem. Phys. 2023, 159, 014905.10.1063/5.0155973. PubMed DOI
Rahbari A.; Hens R.; Ramdin M.; Moultos O. A.; Dubbeldam D.; Vlugt T. J. H. Recent advances in the continuous fractional component Monte Carlo methodology. Mol. Simul. 2021, 47, 804–823. 10.1080/08927022.2020.1828585. DOI
Poursaeidesfahani A.; Hens R.; Rahbari A.; Ramdin M.; Dubbeldam D.; Vlugt T. J. H. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. J. Chem. Theory Comput. 2017, 13, 4452–4466. 10.1021/acs.jctc.7b00092. PubMed DOI PMC
Beyer D.; Landsgesell J.; Hebbeker P.; Rud O.; Lunkad R.; Košovan P.; Holm C. Correction to ”Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2022, 55, 1088.10.1021/acs.macromol.1c02672. DOI
Landsgesell J.; Beyer D.; Hebbeker P.; Košovan P.; Holm C. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules 2022, 55, 3176–3188. 10.1021/acs.macromol.1c02489. DOI
Staňo R.; Košovan P.; Tagliabue A.; Holm C. Electrostatically Cross-Linked Reversible Gels-Effects of pH and Ionic Strength. Macromolecules 2021, 54, 4769–4781. 10.1021/acs.macromol.1c00470. DOI
Weeks J. D.; Chandler D.; Andersen H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971, 54, 5237–5247. 10.1063/1.1674820. DOI
Hansen J.; McDonald I.. Theory of Simple Liquids: with Applications to Soft Matter; Elsevier Science, 2013.
McQuarrie D.Statistical Mechanics; Chemistry Series; Harper & Row, 1975.
Frenkel D.; Smit B.. Understanding Molecular Simulation: From Algorithms to Applications; Computational Science Series; Academic Press, 2002.
Hockney R. W.; Eastwood J. W.. Computer Simulation Using Particles; IOP: London, 1988.
Deserno M.; Holm C. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 1998, 109, 7678–7693. 10.1063/1.477414. DOI
Deserno M.; Holm C. How to mesh up Ewald sums. II. An accurate error estimate for the Particle-Particle-Particle-Mesh algorithm. J. Chem. Phys. 1998, 109, 7694–7701. 10.1063/1.477415. DOI
Digby Z. A.; Yang M.; Lteif S.; Schlenoff J. B. Salt Resistance as a Measure of the Strength of Polyelectrolyte Complexation. Macromolecules 2022, 55, 978–988. 10.1021/acs.macromol.1c02151. DOI
Beyer D.; Košovan P.; Holm C. Simulations explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules 2022, 55, 10751–10760. 10.1021/acs.macromol.2c01916. DOI
Lunkad R.; Murmiliuk A.; Hebbeker P.; Boublík M.; Tošner Z.; Štěpánek M.; Košovan P. Quantitative prediction of charge regulation in oligopeptides. Mol. Syst. Des. Eng. 2021, 6, 122–131. 10.1039/D0ME00147C. DOI
Lunkad R.; Murmiliuk A.; Tošner Z.; Štěpánek M.; Košovan P. Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences. Polymers 2021, 13, 214.10.3390/polym13020214. PubMed DOI PMC
Weik F.; Weeber R.; Szuttor K.; Breitsprecher K.; de Graaf J.; Kuron M.; Landsgesell J.; Menke H.; Sean D.; Holm C. ESPResSo 4.0 – an extensible software package for simulating soft matter systems. Eur. Phys. J.: Spec. Top. 2019, 227, 1789–1816. 10.1140/epjst/e2019-800186-9. DOI
Lide D. R.CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press, 1995.
Košovan P.; Richter T.; Holm C. Modeling of Polyelectrolyte Gels in Equilibrium with Salt Solutions. Macromolecules 2015, 48, 7698–7708. 10.1021/acs.macromol.5b01428. DOI
Smiatek J. Theoretical and Computational Insight into Solvent and Specific Ion Effects for Polyelectrolytes: The Importance of Local Molecular Interactions. Molecules 2020, 25, 1661.10.3390/molecules25071661. PubMed DOI PMC
Salis A.; Ninham B. W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. 10.1039/C4CS00144C. PubMed DOI
An Y.; Singh S.; Bejagam K. K.; Deshmukh S. A. Development of an Accurate Coarse-Grained Model of Poly(acrylic acid) in Explicit Solvents. Macromolecules 2019, 52, 4875–4887. 10.1021/acs.macromol.9b00615. DOI
Giussi J. M.; Martínez Moro M.; Iborra A.; Cortez M. L.; Di Silvio D.; Llarena Conde I.; Longo G. S.; Azzaroni O.; Moya S. A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) microgels. Soft Matter 2020, 16, 881–890. 10.1039/C9SM02070E. PubMed DOI
Truesdell A. H. Activity Coefficients of Aqueous Sodium Chloride from 15° to 50°C Measured with a Glass Electrode. Science 1968, 161, 884–886. 10.1126/science.161.3844.884. PubMed DOI
Neitzel A. E.; Fang Y. N.; Yu B.; Rumyantsev A. M.; de Pablo J. J.; Tirrell M. V. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021, 54, 6878–6890. 10.1021/acs.macromol.1c00703. PubMed DOI PMC
Duan X.; Nakamura I. A new lattice Monte Carlo simulation for dielectric saturation in ion-containing liquids. Soft Matter 2015, 11, 3566–3571. 10.1039/C5SM00336A. PubMed DOI
Jouyban A.; Soltanpour S.; Chan H.-K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. Int. J. Pharm. 2004, 269, 353–360. 10.1016/j.ijpharm.2003.09.010. PubMed DOI
Hebbeker P.; Blanco P.; Uhlík F.; Kosovan P.. Finite-Size Effects in Simulations of Chemical Reactions. 2023, 10.26434/chemrxiv-2023-n2g58.