Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment

. 2024 Feb 13 ; 57 (3) : 1383-1398. [epub] 20240118

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38370910

Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.

Zobrazit více v PubMed

Muthukumar M. 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions. Macromolecules 2017, 50, 9528–9560. 10.1021/acs.macromol.7b01929. PubMed DOI PMC

Gucht J. v. d.; Spruijt E.; Lemmers M.; Cohen Stuart M. A. Polyelectrolyte complexes: Bulk phases and colloidal systems. J. Colloid Interface Sci. 2011, 361, 407–422. 10.1016/j.jcis.2011.05.080. PubMed DOI

Tiebackx F. W. Gleichzeitige Ausflockung zweier Kolloide. Z. Chem. Ind. Kolloide 1911, 8, 198–201. 10.1007/BF01503532. DOI

Overbeek J. T. G.; Voorn M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 1957, 49, 7–26. 10.1002/jcp.1030490404. PubMed DOI

Sing C. E.; Perry S. L. Recent progress in the science of complex coacervation. Soft Matter 2020, 16, 2885–2914. 10.1039/D0SM00001A. PubMed DOI

Rumyantsev A. M.; Jackson N. E.; de Pablo J. J. Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers. Annu. Rev. Condens. Matter Phys. 2021, 12, 155–176. 10.1146/annurev-conmatphys-042020-113457. DOI

Wasilewski T. Coacervates as a Modern Delivery System of Hand Dishwashing Liquids. J. Surfactants Deterg. 2010, 13, 513–520. 10.1007/s11743-010-1189-4. DOI

Schmitt C.; Turgeon S. L. Protein/polysaccharide complexes and coacervates in food systems. Adv. Colloid Interface Sci. 2011, 167, 63–70. 10.1016/j.cis.2010.10.001. PubMed DOI

Gruber D.; Ruiz-Agudo C.; Cölfen H. Cationic Coacervates: Novel Phosphate Ionic Reservoir for the Mineralization of Calcium Phosphates. ACS Biomater. Sci. Eng. 2023, 9, 1791–1795. 10.1021/acsbiomaterials.1c01090. PubMed DOI

Insua I.; Wilkinson A.; Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur. Polym. J. 2016, 81, 198–215. 10.1016/j.eurpolymj.2016.06.003. PubMed DOI PMC

Margossian K. O.; Brown M. U.; Emrick T.; Muthukumar M. Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms. Nat. Commun. 2022, 13, 2250.10.1038/s41467-022-29851-y. PubMed DOI PMC

Blocher W. C.; Perry S. L. Complex coacervate-based materials for biomedicine. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, e144210.1002/wnan.1442. PubMed DOI

Bediako J. K.; Kang J.-H.; Yun Y.-S.; Choi S.-H. Facile Processing of Polyelectrolyte Complexes for Immobilization of Heavy Metal Ions in Wastewater. ACS Appl. Polym. Mater. 2022, 4, 2346–2354. 10.1021/acsapm.1c01634. DOI

Valley B.; Jing B.; Ferreira M.; Zhu Y. Rapid and Efficient Coacervate Extraction of Cationic Industrial Dyes from Wastewater. ACS Appl. Mater. Interfaces 2019, 11, 7472–7478. 10.1021/acsami.8b21674. PubMed DOI

Zhang Z.; Liu Q.; Sun Z.; Phillips B. K.; Wang Z.; Al-Hashimi M.; Fang L.; Olson M. A. Poly-Lipoic Ester-Based Coacervates for the Efficient Removal of Organic Pollutants from Water and Increased Point-of-Use Versatility. Chem. Mater. 2019, 31, 4405–4417. 10.1021/acs.chemmater.9b00725. DOI

Sproncken C. C. M.; Gumí-Audenis B.; Foroutanparsa S.; Magana J. R.; Voets I. K. Controlling the Formation of Polyelectrolyte Complex Nanoparticles Using Programmable pH Reactions. Macromolecules 2023, 56, 226–233. 10.1021/acs.macromol.2c01431. PubMed DOI PMC

Huang Y.; Lawrence P. G.; Lapitsky Y. Self-Assembly of Stiff, Adhesive and Self-Healing Gels from Common Polyelectrolytes. Langmuir 2014, 30, 7771–7777. 10.1021/la404606y. PubMed DOI

Yang M.; Digby Z. A.; Chen Y.; Schlenoff J. B. Valence-induced jumps in coacervate properties. Sci. Adv. 2022, 8, eabm478310.1126/sciadv.abm4783. PubMed DOI PMC

Lemmers M.; Spruijt E.; Akerboom S.; Voets I. K.; van Aelst A. C.; Cohen Stuart M. A.; van der Gucht J. Physical Gels Based on Charge-Driven Bridging of Nanoparticles by Triblock Copolymers. Langmuir 2012, 28, 12311–12318. 10.1021/la301917e. PubMed DOI

Voets I. K.; de Keizer A.; Cohen Stuart M. A. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009, 147–148, 300–318. 10.1016/j.cis.2008.09.012. PubMed DOI

Lemmers M.; Sprakel J.; Voets I. K.; van der Gucht J.; Cohen Stuart M. Multiresponsive Reversible Gels Based on Charge-Driven Assembly. Angew. Chem., Int. Ed. 2010, 49, 708–711. 10.1002/anie.200905515. PubMed DOI

Gao; Holkar; Srivastava Protein-Polyelectrolyte Complexes and Micellar Assemblies. Polymers 2019, 11, 1097.10.3390/polym11071097. PubMed DOI PMC

Water J. J.; Schack M. M.; Velazquez-Campoy A.; Maltesen M. J.; van de Weert M.; Jorgensen L. Complex coacervates of hyaluronic acid and lysozyme: Effect on protein structure and physical stability. Eur. J. Pharm. Biopharm. 2014, 88, 325–331. 10.1016/j.ejpb.2014.09.001. PubMed DOI

Kayitmazer A. B.; Seeman D.; Minsky B. B.; Dubin P. L.; Xu Y. Protein–polyelectrolyte interactions. Soft Matter 2013, 9, 2553–2583. 10.1039/c2sm27002a. DOI

Hyman A. A.; Weber C. A.; Jülicher F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. 10.1146/annurev-cellbio-100913-013325. PubMed DOI

Lin Y.; McCarty J.; Rauch J. N.; Delaney K. T.; Kosik K. S.; Fredrickson G. H.; Shea J.-E.; Han S. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 2019, 8, e4257110.7554/eLife.42571. PubMed DOI PMC

Aumiller W. M.; Keating C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 2016, 8, 129–137. 10.1038/nchem.2414. PubMed DOI

Zhu J.; Jiang L. Liquid–Liquid Phase Separation Bridges Physics, Chemistry, and Biology. Langmuir 2022, 38, 9043–9049. 10.1021/acs.langmuir.2c01358. PubMed DOI

Jacobs M. I.; Jira E. R.; Schroeder C. M. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity. Langmuir 2021, 37, 14323–14335. 10.1021/acs.langmuir.1c02231. PubMed DOI

McCall P. M.; Srivastava S.; Perry S. L.; Kovar D. R.; Gardel M. L.; Tirrell M. V. Partitioning and Enhanced Self-Assembly of Actin in Polypeptide Coacervates. Biophys. J. 2018, 114, 1636–1645. 10.1016/j.bpj.2018.02.020. PubMed DOI PMC

Martin N.; Li M.; Mann S. Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. Langmuir 2016, 32, 5881–5889. 10.1021/acs.langmuir.6b01271. PubMed DOI

Lindhoud S.; Claessens M. M. A. E. Accumulation of small protein molecules in a macroscopic complex coacervate. Soft Matter 2016, 12, 408–413. 10.1039/C5SM02386F. PubMed DOI

Blocher McTigue W. C.; Perry S. L. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. Small 2020, 16, 1907671.10.1002/smll.201907671. PubMed DOI

Zhang Y.; Han K.; Lu D.; Liu Z. Reversible encapsulation of lysozyme within mPEG-b-PMAA: experimental observation and molecular dynamics simulation. Soft Matter 2013, 9, 8723–8729. 10.1039/c3sm50586c. DOI

Zhao M.; Zacharia N. S. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation. J. Chem. Phys. 2018, 149, 163326.10.1063/1.5040346. PubMed DOI

Xu Y.; Mazzawi M.; Chen K.; Sun L.; Dubin P. L. Protein Purification by Polyelectrolyte Coacervation: Influence of Protein Charge Anisotropy on Selectivity. Biomacromolecules 2011, 12, 1512–1522. 10.1021/bm101465y. PubMed DOI

Blocher McTigue W. C.; Perry S. L. Design rules for encapsulating proteins into complex coacervates. Soft Matter 2019, 15, 3089–3103. 10.1039/C9SM00372J. PubMed DOI

Kapelner R. A.; Obermeyer A. C. Ionic polypeptide tags for protein phase separation. Chem. Sci. 2019, 10, 2700–2707. 10.1039/C8SC04253E. PubMed DOI PMC

Obermeyer A. C.; Mills C. E.; Dong X.-H.; Flores R. J.; Olsen B. D. Complex coacervation of supercharged proteins with polyelectrolytes. Soft Matter 2016, 12, 3570–3581. 10.1039/C6SM00002A. PubMed DOI

van Lente J.; Pazos Urrea M.; Brouwer T.; Schuur B.; Lindhoud S. Complex coacervates as extraction media. Green Chem. 2021, 23, 5812–5824. 10.1039/D1GC01880A. PubMed DOI PMC

Black K. A.; Priftis D.; Perry S. L.; Yip J.; Byun W. Y.; Tirrell M. Protein Encapsulation via Polypeptide Complex Coacervation. ACS Macro Lett. 2014, 3, 1088–1091. 10.1021/mz500529v. PubMed DOI

van Lente J. J.; Claessens M. M. A. E.; Lindhoud S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules 2019, 20, 3696–3703. 10.1021/acs.biomac.9b00701. PubMed DOI PMC

Spruijt E.; Westphal A. H.; Borst J. W.; Cohen Stuart M. A.; van der Gucht J. Binodal Compositions of Polyelectrolyte Complexes. Macromolecules 2010, 43, 6476–6484. 10.1021/ma101031t. DOI

Chollakup R.; Smitthipong W.; Eisenbach C. D.; Tirrell M. Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)-Poly(allylamine) Solutions. Macromolecules 2010, 43, 2518–2528. 10.1021/ma902144k. DOI

Chollakup R.; Beck J. B.; Dirnberger K.; Tirrell M.; Eisenbach C. D. Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride. Macromolecules 2013, 46, 2376–2390. 10.1021/ma202172q. DOI

Priftis D.; Tirrell M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 2012, 8, 9396–9405. 10.1039/C2SM25604E. DOI

Li L.; Srivastava S.; Meng S.; Ting J. M.; Tirrell M. V. Effects of Non-Electrostatic Intermolecular Interactions on the Phase Behavior of pH-Sensitive Polyelectrolyte Complexes. Macromolecules 2020, 53, 7835–7844. 10.1021/acs.macromol.0c00999. DOI

Schröder P.; Cord-Landwehr S.; Schönhoff M.; Cramer C. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration. Biomacromolecules 2023, 24, 1194–1208. 10.1021/acs.biomac.2c01255. PubMed DOI

Chang L.-W.; Lytle T. K.; Radhakrishna M.; Madinya J. J.; Vélez J.; Sing C. E.; Perry S. L. Sequence and entropy-based control of complex coacervates. Nat. Commun. 2017, 8, 1273.10.1038/s41467-017-01249-1. PubMed DOI PMC

Priftis D.; Laugel N.; Tirrell M. Thermodynamic Characterization of Polypeptide Complex Coacervation. Langmuir 2012, 28, 15947–15957. 10.1021/la302729r. PubMed DOI

Fu J.; Schlenoff J. B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138, 980–990. 10.1021/jacs.5b11878. PubMed DOI

Wang Q.; Schlenoff J. B. The Polyelectrolyte Complex/Coacervate Continuum. Macromolecules 2014, 47, 3108–3116. 10.1021/ma500500q. DOI

Meng S.; Ting J. M.; Wu H.; Tirrell M. V. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes. Macromolecules 2020, 53, 7944–7953. 10.1021/acs.macromol.0c00930. DOI

Liu Y.; Momani B.; Winter H. H.; Perry S. L. Rheological characterization of liquid-to-solid transitions in bulk polyelectrolyte complexes. Soft Matter 2017, 13, 7332–7340. 10.1039/C7SM01285C. PubMed DOI

Chen Y.; Yang M.; Shaheen S. A.; Schlenoff J. B. Influence of Nonstoichiometry on the Viscoelastic Properties of a Polyelectrolyte Complex. Macromolecules 2021, 54, 7890–7899. 10.1021/acs.macromol.1c01154. DOI

Tirrell M. Polyelectrolyte Complexes: Fluid or Solid?. ACS Cent. Sci. 2018, 4, 532–533. 10.1021/acscentsci.8b00284. PubMed DOI PMC

Huang J.; Morin F. J.; Laaser J. E. Charge-Density-Dominated Phase Behavior and Viscoelasticity of Polyelectrolyte Complex Coacervates. Macromolecules 2019, 52, 4957–4967. 10.1021/acs.macromol.9b00036. DOI

Qin J.; Priftis D.; Farina R.; Perry S. L.; Leon L.; Whitmer J.; Hoffmann K.; Tirrell M.; de Pablo J. J. Interfacial Tension of Polyelectrolyte Complex Coacervate Phases. ACS Macro Lett. 2014, 3, 565–568. 10.1021/mz500190w. PubMed DOI

Audus D. J.; Ali S.; Rumyantsev A. M.; Ma Y.; de Pablo J. J.; Prabhu V. M. Molecular Mass Dependence of Interfacial Tension in Complex Coacervation. Phys. Rev. Lett. 2021, 126, 237801.10.1103/PhysRevLett.126.237801. PubMed DOI PMC

Sing C. E. Development of the modern theory of polymeric complex coacervation. Adv. Colloid Interface Sci. 2017, 239, 2–16. 10.1016/j.cis.2016.04.004. PubMed DOI

Rubinstein M.; Liao Q.; Panyukov S. Structure of Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes. Macromolecules 2018, 51, 9572–9588. 10.1021/acs.macromol.8b02059. PubMed DOI PMC

Rumyantsev A. M.; Zhulina E. B.; Borisov O. V. Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States. Macromolecules 2018, 51, 3788–3801. 10.1021/acs.macromol.8b00342. DOI

Castelnovo M.; Joanny J.-F. Eur. Phys. J. E: Soft Matter Biol. Phys. 2001, 6, 377–386. 10.1007/s10189-001-8051-7. DOI

Salehi A.; Larson R. G. A Molecular Thermodynamic Model of Complexation in Mixtures of Oppositely Charged Polyelectrolytes with Explicit Account of Charge Association/Dissociation. Macromolecules 2016, 49, 9706–9719. 10.1021/acs.macromol.6b01464. DOI

Kumari S.; Dwivedi S.; Podgornik R. On the nature of screening in Voorn–Overbeek type theories. J. Chem. Phys. 2022, 156, 244901.10.1063/5.0091721. PubMed DOI

Zhang P.; Alsaifi N. M.; Wu J.; Wang Z.-G. Polyelectrolyte complex coacervation: Effects of concentration asymmetry. J. Chem. Phys. 2018, 149, 163303.10.1063/1.5028524. PubMed DOI

Zhang P.; Shen K.; Alsaifi N. M.; Wang Z.-G. Salt Partitioning in Complex Coacervation of Symmetric Polyelectrolytes. Macromolecules 2018, 51, 5586–5593. 10.1021/acs.macromol.8b00726. DOI

Adhikari S.; Leaf M. A.; Muthukumar M. Polyelectrolyte complex coacervation by electrostatic dipolar interactions. J. Chem. Phys. 2018, 149, 163308.10.1063/1.5029268. PubMed DOI

Zhang P.; Wang Z.-G. Interfacial Structure and Tension of Polyelectrolyte Complex Coacervates. Macromolecules 2021, 54, 10994–11007. 10.1021/acs.macromol.1c01809. DOI

Sayko R.; Tian Y.; Liang H.; Dobrynin A. V. Charged Polymers: From Polyelectrolyte Solutions to Polyelectrolyte Complexes. Macromolecules 2021, 54, 7183–7192. 10.1021/acs.macromol.1c01171. DOI

Delaney K. T.; Fredrickson G. H. Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates. J. Chem. Phys. 2017, 146, 224902.10.1063/1.4985568. PubMed DOI

Lytle T. K.; Sing C. E. Transfer matrix theory of polymer complex coacervation. Soft Matter 2017, 13, 7001–7012. 10.1039/C7SM01080J. PubMed DOI

Lytle T. K.; Sing C. E. Tuning chain interaction entropy in complex coacervation using polymer stiffness, architecture, and salt valency. Mol. Syst. Des. Eng. 2018, 3, 183–196. 10.1039/C7ME00108H. DOI

Lytle T. K.; Chang L.-W.; Markiewicz N.; Perry S. L.; Sing C. E. Designing Electrostatic Interactions via Polyelectrolyte Monomer Sequence. ACS Cent. Sci. 2019, 5, 709–718. 10.1021/acscentsci.9b00087. PubMed DOI PMC

Qin J.; de Pablo J. J. Criticality and Connectivity in Macromolecular Charge Complexation. Macromolecules 2016, 49, 8789–8800. 10.1021/acs.macromol.6b02113. DOI

Zhang R.; Shklovskii B. Phase diagram of solution of oppositely charged polyelectrolytes. Phys. A 2005, 352, 216–238. 10.1016/j.physa.2004.12.037. DOI

Perry S. L.; Sing C. E. PRISM-Based Theory of Complex Coacervation: Excluded Volume versus Chain Correlation. Macromolecules 2015, 48, 5040–5053. 10.1021/acs.macromol.5b01027. DOI

Radhakrishna M.; Basu K.; Liu Y.; Shamsi R.; Perry S. L.; Sing C. E. Molecular Connectivity and Correlation Effects on Polymer Coacervation. Macromolecules 2017, 50, 3030–3037. 10.1021/acs.macromol.6b02582. DOI

Yang M.; Sonawane S. L.; Digby Z. A.; Park J. G.; Schlenoff J. B. Influence of “Hydrophobicity” on the Composition and Dynamics of Polyelectrolyte Complex Coacervates. Macromolecules 2022, 55, 7594–7604. 10.1021/acs.macromol.2c00267. DOI

Kim S.; Lee M.; Lee W. B.; Choi S.-H. Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules 2021, 54, 7572–7581. 10.1021/acs.macromol.1c00216. DOI

Fu J.; Fares H. M.; Schlenoff J. B. Ion-Pairing Strength in Polyelectrolyte Complexes. Macromolecules 2017, 50, 1066–1074. 10.1021/acs.macromol.6b02445. DOI

Li L.; Rumyantsev A. M.; Srivastava S.; Meng S.; de Pablo J. J.; Tirrell M. V. Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. Macromolecules 2021, 54, 105–114. 10.1021/acs.macromol.0c01000. DOI

Perry S. L.; Li Y.; Priftis D.; Leon L.; Tirrell M. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes. Polymers 2014, 6, 1756–1772. 10.3390/polym6061756. DOI

Schlenoff J. B.; Yang M.; Digby Z. A.; Wang Q. Ion Content of Polyelectrolyte Complex Coacervates and the Donnan Equilibrium. Macromolecules 2019, 52, 9149–9159. 10.1021/acs.macromol.9b01755. DOI

Meng S.; Liu Y.; Yeo J.; Ting J. M.; Tirrell M. V. Effect of mixed solvents on polyelectrolyte complexes with salt. Colloid Polym. Sci. 2020, 298, 887–894. 10.1007/s00396-020-04637-0. DOI

Li L.; Srivastava S.; Andreev M.; Marciel A. B.; de Pablo J. J.; Tirrell M. V. Phase Behavior and Salt Partitioning in Polyelectrolyte Complex Coacervates. Macromolecules 2018, 51, 2988–2995. 10.1021/acs.macromol.8b00238. DOI

Dautzenberg H.; Kriz J. Response of Polyelectrolyte Complexes to Subsequent Addition of Salts with Different Cations. Langmuir 2003, 19, 5204–5211. 10.1021/la0209482. DOI

Iyer D.; Syed V. M. S.; Srivastava S. Influence of divalent ions on composition and viscoelasticity of polyelectrolyte complexes. J. Polym. Sci. 2021, 59, 2895–2904. 10.1002/pol.20210668. DOI

Huang S.; Zhao M.; Dawadi M. B.; Cai Y.; Lapitsky Y.; Modarelli D. A.; Zacharia N. S. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate). J. Colloid Interface Sci. 2018, 518, 216–224. 10.1016/j.jcis.2018.02.029. PubMed DOI

van Lente J. J.; Lindhoud S. Extraction of Lysozyme from Chicken Albumen Using Polyelectrolyte Complexes. Small 2022, 18, 2105147.10.1002/smll.202105147. PubMed DOI

Choi S.; Knoerdel A. R.; Sing C. E.; Keating C. D. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule. J. Phys. Chem. B 2023, 127, 5978–5991. 10.1021/acs.jpcb.3c02098. PubMed DOI

Landsgesell J.; Nova L.; Rud O.; Uhlik F.; Sean D.; Hebbeker P.; Holm C.; Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter 2019, 15, 1155–1185. 10.1039/C8SM02085J. PubMed DOI

Gartner T. E. I.; Jayaraman A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. 10.1021/acs.macromol.8b01836. DOI

Ou Z.; Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J. Chem. Phys. 2006, 124, 154902.10.1063/1.2178803. PubMed DOI

Singh A. N.; Yethiraj A. Driving Force for the Complexation of Charged Polypeptides. J. Phys. Chem. B 2020, 124, 1285–1292. 10.1021/acs.jpcb.9b09553. PubMed DOI

Rathee V. S.; Sidky H.; Sikora B. J.; Whitmer J. K. Role of Associative Charging in the Entropy–Energy Balance of Polyelectrolyte Complexes. J. Am. Chem. Soc. 2018, 140, 15319–15328. 10.1021/jacs.8b08649. PubMed DOI

Chen S.; Zhang P.; Wang Z.-G. Complexation between Oppositely Charged Polyelectrolytes in Dilute Solution: Effects of Charge Asymmetry. Macromolecules 2022, 55, 3898–3909. 10.1021/acs.macromol.2c00339. DOI

Tsanai M.; Frederix P. J. M.; Schroer C. F. E.; Souza P. C. T.; Marrink S. J. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chem. Sci. 2021, 12, 8521–8530. 10.1039/D1SC00374G. PubMed DOI PMC

Shakya A.; Girard M.; King J. T.; Olvera de la Cruz M. Role of Chain Flexibility in Asymmetric Polyelectrolyte Complexation in Salt Solutions. Macromolecules 2020, 53, 1258–1269. 10.1021/acs.macromol.9b02355. DOI

Bobbili S. V.; Milner S. T. Closed-Loop Phase Behavior of Nonstoichiometric Coacervates in Coarse-Grained Simulations. Macromolecules 2022, 55, 511–516. 10.1021/acs.macromol.1c02115. DOI

Andreev M.; Prabhu V. M.; Douglas J. F.; Tirrell M.; de Pablo J. J. Complex Coacervation in Polyelectrolytes from a Coarse-Grained Model. Macromolecules 2018, 51, 6717–6723. 10.1021/acs.macromol.8b00556. PubMed DOI PMC

Liang H.; de Pablo J. J. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022, 55, 4146–4158. 10.1021/acs.macromol.2c00246. DOI

Panagiotopoulos A. Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 1987, 61, 813–826. 10.1080/00268978700101491. DOI

Knoerdel A. R.; Blocher McTigue W. C.; Sing C. E. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. J. Phys. Chem. B 2021, 125, 8965–8980. 10.1021/acs.jpcb.1c03065. PubMed DOI

Zheng B.; Avni Y.; Andelman D.; Podgornik R. Phase Separation of Polyelectrolytes: The Effect of Charge Regulation. J. Phys. Chem. B 2021, 125, 7863–7870. 10.1021/acs.jpcb.1c01986. PubMed DOI PMC

Landsgesell J.; Hebbeker P.; Rud O.; Lunkad R.; Košovan P.; Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2020, 53, 3007–3020. 10.1021/acs.macromol.0c00260. DOI

Beyer D.; Holm C. A generalized grand-reaction method for modeling the exchange of weak (polyprotic) acids between a solution and a weak polyelectrolyte phase. J. Chem. Phys. 2023, 159, 014905.10.1063/5.0155973. PubMed DOI

Rahbari A.; Hens R.; Ramdin M.; Moultos O. A.; Dubbeldam D.; Vlugt T. J. H. Recent advances in the continuous fractional component Monte Carlo methodology. Mol. Simul. 2021, 47, 804–823. 10.1080/08927022.2020.1828585. DOI

Poursaeidesfahani A.; Hens R.; Rahbari A.; Ramdin M.; Dubbeldam D.; Vlugt T. J. H. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. J. Chem. Theory Comput. 2017, 13, 4452–4466. 10.1021/acs.jctc.7b00092. PubMed DOI PMC

Beyer D.; Landsgesell J.; Hebbeker P.; Rud O.; Lunkad R.; Košovan P.; Holm C. Correction to ”Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2022, 55, 1088.10.1021/acs.macromol.1c02672. DOI

Landsgesell J.; Beyer D.; Hebbeker P.; Košovan P.; Holm C. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules 2022, 55, 3176–3188. 10.1021/acs.macromol.1c02489. DOI

Staňo R.; Košovan P.; Tagliabue A.; Holm C. Electrostatically Cross-Linked Reversible Gels-Effects of pH and Ionic Strength. Macromolecules 2021, 54, 4769–4781. 10.1021/acs.macromol.1c00470. DOI

Weeks J. D.; Chandler D.; Andersen H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971, 54, 5237–5247. 10.1063/1.1674820. DOI

Hansen J.; McDonald I.. Theory of Simple Liquids: with Applications to Soft Matter; Elsevier Science, 2013.

McQuarrie D.Statistical Mechanics; Chemistry Series; Harper & Row, 1975.

Frenkel D.; Smit B.. Understanding Molecular Simulation: From Algorithms to Applications; Computational Science Series; Academic Press, 2002.

Hockney R. W.; Eastwood J. W.. Computer Simulation Using Particles; IOP: London, 1988.

Deserno M.; Holm C. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 1998, 109, 7678–7693. 10.1063/1.477414. DOI

Deserno M.; Holm C. How to mesh up Ewald sums. II. An accurate error estimate for the Particle-Particle-Particle-Mesh algorithm. J. Chem. Phys. 1998, 109, 7694–7701. 10.1063/1.477415. DOI

Digby Z. A.; Yang M.; Lteif S.; Schlenoff J. B. Salt Resistance as a Measure of the Strength of Polyelectrolyte Complexation. Macromolecules 2022, 55, 978–988. 10.1021/acs.macromol.1c02151. DOI

Beyer D.; Košovan P.; Holm C. Simulations explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules 2022, 55, 10751–10760. 10.1021/acs.macromol.2c01916. DOI

Lunkad R.; Murmiliuk A.; Hebbeker P.; Boublík M.; Tošner Z.; Štěpánek M.; Košovan P. Quantitative prediction of charge regulation in oligopeptides. Mol. Syst. Des. Eng. 2021, 6, 122–131. 10.1039/D0ME00147C. DOI

Lunkad R.; Murmiliuk A.; Tošner Z.; Štěpánek M.; Košovan P. Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences. Polymers 2021, 13, 214.10.3390/polym13020214. PubMed DOI PMC

Weik F.; Weeber R.; Szuttor K.; Breitsprecher K.; de Graaf J.; Kuron M.; Landsgesell J.; Menke H.; Sean D.; Holm C. ESPResSo 4.0 – an extensible software package for simulating soft matter systems. Eur. Phys. J.: Spec. Top. 2019, 227, 1789–1816. 10.1140/epjst/e2019-800186-9. DOI

Lide D. R.CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press, 1995.

Košovan P.; Richter T.; Holm C. Modeling of Polyelectrolyte Gels in Equilibrium with Salt Solutions. Macromolecules 2015, 48, 7698–7708. 10.1021/acs.macromol.5b01428. DOI

Smiatek J. Theoretical and Computational Insight into Solvent and Specific Ion Effects for Polyelectrolytes: The Importance of Local Molecular Interactions. Molecules 2020, 25, 1661.10.3390/molecules25071661. PubMed DOI PMC

Salis A.; Ninham B. W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. 10.1039/C4CS00144C. PubMed DOI

An Y.; Singh S.; Bejagam K. K.; Deshmukh S. A. Development of an Accurate Coarse-Grained Model of Poly(acrylic acid) in Explicit Solvents. Macromolecules 2019, 52, 4875–4887. 10.1021/acs.macromol.9b00615. DOI

Giussi J. M.; Martínez Moro M.; Iborra A.; Cortez M. L.; Di Silvio D.; Llarena Conde I.; Longo G. S.; Azzaroni O.; Moya S. A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) microgels. Soft Matter 2020, 16, 881–890. 10.1039/C9SM02070E. PubMed DOI

Truesdell A. H. Activity Coefficients of Aqueous Sodium Chloride from 15° to 50°C Measured with a Glass Electrode. Science 1968, 161, 884–886. 10.1126/science.161.3844.884. PubMed DOI

Neitzel A. E.; Fang Y. N.; Yu B.; Rumyantsev A. M.; de Pablo J. J.; Tirrell M. V. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021, 54, 6878–6890. 10.1021/acs.macromol.1c00703. PubMed DOI PMC

Duan X.; Nakamura I. A new lattice Monte Carlo simulation for dielectric saturation in ion-containing liquids. Soft Matter 2015, 11, 3566–3571. 10.1039/C5SM00336A. PubMed DOI

Jouyban A.; Soltanpour S.; Chan H.-K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. Int. J. Pharm. 2004, 269, 353–360. 10.1016/j.ijpharm.2003.09.010. PubMed DOI

Hebbeker P.; Blanco P.; Uhlík F.; Kosovan P.. Finite-Size Effects in Simulations of Chemical Reactions. 2023, 10.26434/chemrxiv-2023-n2g58.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Charge Regulation Triggers Condensation of Short Oligopeptides to Polyelectrolytes

. 2024 May 27 ; 4 (5) : 1775-1785. [epub] 20240313

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...