Charge Regulation Triggers Condensation of Short Oligopeptides to Polyelectrolytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38818083
PubMed Central
PMC11134362
DOI
10.1021/jacsau.3c00668
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Electrostatic interactions between charged macromolecules are ubiquitous in biological systems, and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interactions, experimental evidence supporting such a view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: (1) practically nonionized and free in solution; (2) highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.
Department of Physics NTNU Norwegian University of Science and Technology NO 7491 Trondheim Norway
Faculty of Physics University of Vienna Boltzmanngasse 5 Vienna 1090 Austria
Institute of Macromolecular Chemistry AS CR Heyrovský square 2 162 06 Prague 6 Czech Republic
Vienna Doctoral School in Physics University of Vienna Boltzmanngasse 5 Vienna 1090 Austria
Zobrazit více v PubMed
Schiessel H. The physics of chromatin. J. Phys.: Condens. Matter 2003, 15, R699.10.1088/0953-8984/15/19/203. PubMed DOI
Korolev N.; Vorontsova O. V.; Nordenskiöld L. Physicochemical analysis of electrostatic foundation for DNA–protein interactions in chromatin transformations. Prog. Biophys. Mol. Biol. 2007, 95, 23–49. 10.1016/j.pbiomolbio.2006.11.003. PubMed DOI
Belyi V. A.; Muthukumar M. Electrostatic origin of the genome packing in viruses. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 17174–17178. 10.1073/pnas.0608311103. PubMed DOI PMC
Borukhov I.; Bruinsma R. F.; Gelbart W. M.; Liu A. J. Structural polymorphism of the cytoskeleton: A model of linker-assisted filament aggregation. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3673–3678. 10.1073/pnas.0404140102. PubMed DOI PMC
Sing C. E.; Perry S. L. Recent progress in the science of complex coacervation. Soft Matter 2020, 16, 2885–2914. 10.1039/D0SM00001A. PubMed DOI
van der Gucht J.; Spruijt E.; Lemmers M.; Cohen Stuart M. A. Polyelectrolyte complexes: Bulk phases and colloidal systems. J. Colloid Interface Sci. 2011, 361, 407–422. 10.1016/j.jcis.2011.05.080. PubMed DOI
Banani S. F.; Lee H. O.; Hyman A. A.; Rosen M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. 10.1038/nrm.2017.7. PubMed DOI PMC
Dobrynin A. V.; Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049–1118. 10.1016/j.progpolymsci.2005.07.006. DOI
Muthukumar M. 50thAnniversary Perspective: A Perspective on Polyelectrolyte Solutions. Macromolecules 2017, 50, 9528–9560. 10.1021/acs.macromol.7b01929. PubMed DOI PMC
Levin Y. Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 2002, 65, 1577.10.1088/0034-4885/65/11/201. DOI
Hueckel T.; Hocky G. M.; Palacci J.; Sacanna S. Ionic solids from common colloids. Nature 2020, 580, 487–490. 10.1038/s41586-020-2205-0. PubMed DOI
Bianchi E.; Kahl G.; Likos C. N. Inverse patchy colloids: from microscopic description to mesoscopic coarse-graining. Soft Matter 2011, 7, 8313–8323. 10.1039/c1sm05597f. DOI
Otter R.; Besenius P. Supramolecular assembly of functional peptide–polymer conjugates. Organic & Biomolecular Chemistry 2019, 17, 6719–6734. 10.1039/C9OB01191A. PubMed DOI
Frisch H.; Unsleber J. P.; Lüdeker D.; Peterlechner M.; Brunklaus G.; Waller M.; Besenius P. pH-Switchable Ampholytic Supramolecular Copolymers. Angew. Chem., Int. Ed. 2013, 52, 10097–10101. 10.1002/anie.201303810. PubMed DOI
Chan K. H.; Lee W. H.; Zhuo S.; Ni M. Harnessing supramolecular peptide nanotechnology in biomedical applications. Int. J. Nanomed. 2017, 12, 1171–1182. 10.2147/IJN.S126154. PubMed DOI PMC
Aggeli A.; Bell M.; Boden N.; Carrick L. M.; Strong A. E. Self-Assembling Peptide Polyelectrolyte β-Sheet Complexes Form Nematic Hydrogels. Angew. Chem., Int. Ed. 2003, 42, 5603–5606. 10.1002/anie.200352207. PubMed DOI
Briggs B. D.; Knecht M. R. Nanotechnology Meets Biology: Peptide-based Methods for the Fabrication of Functional Materials. J. Phys. Chem. Lett. 2012, 3, 405–418. 10.1021/jz2016473. PubMed DOI
Yeung C. L.; Iqbal P.; Allan M.; Lashkor M.; Preece J. A.; Mendes P. M. Tuning Specific Biomolecular Interactions Using Electro-Switchable Oligopeptide Surfaces. Adv. Funct. Mater. 2010, 20, 2657–2663. 10.1002/adfm.201000411. DOI
Kichler A. Gene transfer with modified polyethylenimines. Journal of Gene Medicine 2004, 6, S3–S10. 10.1002/jgm.507. PubMed DOI
Boussif O.; Lezoualch F.; Zanta M. A.; Mergny M. D.; Scherman D.; Demeneix B.; Behr J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7297–7301. 10.1073/pnas.92.16.7297. PubMed DOI PMC
Gill A.; Scanlon T. C.; Osipovitch D. C.; Madden D. R.; Griswold K. E. Crystal Structure of a Charge Engineered Human Lysozyme Having Enhanced Bactericidal Activity. PLoS One 2011, 6, e16788.10.1371/journal.pone.0016788. PubMed DOI PMC
Nie C.; Sahoo A. K.; Netz R. R.; Herrmann A.; Ballauff M.; Haag R. Charge Matters: Mutations in Omicron Variant Favor Binding to Cells. ChemBioChem. 2022, 23, e202100681.10.1002/cbic.202100681. PubMed DOI PMC
Partridge L. J.; Urwin L.; Nicklin M. J. H.; James D. C.; Green L. R.; Monk P. N. ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin. Cells 2021, 10, 1419.10.3390/cells10061419. PubMed DOI PMC
Suryawanshi R.; Patil C.; Koganti R.; Singh S.; Ames J.; Shukla D. Heparan Sulfate Binding Cationic Peptides Restrict SARS-CoV-2 Entry. Pathogens 2021, 10, 803.10.3390/pathogens10070803. PubMed DOI PMC
Manning G. S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys. 1969, 51, 924–933. 10.1063/1.1672157. DOI
Oosawa F. A simple theory of thermodynamic properties of polyelectrolyte solutions. J. Polym. Sci. 1957, 23, 421–430. 10.1002/pol.1957.1202310335. DOI
Naji A.; Netz R. R. Scaling and universality in the counterion-condensation transition at charged cylinders. Phys. Rev. E 2006, 73, 05610510.1103/PhysRevE.73.056105. PubMed DOI
Muthukumar M. Theory of counter-ion condensation on flexible polyelectrolytes: Adsorption mechanism. J. Chem. Phys. 2004, 120, 9343–9350. 10.1063/1.1701839. PubMed DOI
Raspaud E.; Da Conceicao M.; Livolant F. Do free DNA counterions control the osmotic pressure?. Phys. Rev. Lett. 2000, 84, 2533.10.1103/PhysRevLett.84.2533. PubMed DOI
Heyda J.; Dzubiella J. Ion-specific counterion condensation on charged peptides: Poisson–Boltzmann vs. atomistic simulations. Soft Matter 2012, 8, 9338–9344. 10.1039/c2sm25599e. DOI
Smiatek J. Theoretical and Computational Insight into Solvent and Specific Ion Effects for Polyelectrolytes: The Importance of Local Molecular Interactions. Molecules 2020, 25, 1661.10.3390/molecules25071661. PubMed DOI PMC
Henzler K.; Haupt B.; Lauterbach K.; Wittemann A.; Borisov O.; Ballauff M. Adsorption of β-actoglobulin on spherical polyelectrolyte brushes: Direct proof of counterion release by isothermal titration calorimetry. J. Am. Chem. Soc. 2010, 132, 3159–3163. 10.1021/ja909938c. PubMed DOI
Ran Q.; Xu X.; Dzubiella J.; Haag R.; Ballauff M. Thermodynamics of the Binding of Lysozyme to a Dendritic Polyelectrolyte: Electrostatics Versus Hydration. ACS Omega 2018, 3, 9086–9095. 10.1021/acsomega.8b01493. PubMed DOI PMC
Xu X.; Ran Q.; Dey P.; Nikam R.; Haag R.; Ballauff M.; Dzubiella J. Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs. Biomacromolecules 2018, 19, 409–416. 10.1021/acs.biomac.7b01499. PubMed DOI
Chen S.; Wang Z.-G. Driving force and pathway in polyelectrolyte complex coacervation. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2209975119.10.1073/pnas.2209975119. PubMed DOI PMC
Fu J.; Schlenoff J. B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138, 980–990. 10.1021/jacs.5b11878. PubMed DOI
Ziebarth J. D.; Wang Y. Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations. Biomacromolecules 2010, 11, 29–38. 10.1021/bm900842d. PubMed DOI PMC
Ziebarth J.; Wang Y. Molecular Dynamics Simulations of DNA-Polycation Complex Formation. Biophys. J. 2009, 97, 1971–1983. 10.1016/j.bpj.2009.03.069. PubMed DOI PMC
Bloomfield V. A. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolymers 1991, 31, 1471–1481. 10.1002/bip.360311305. PubMed DOI
Priftis D.; Laugel N.; Tirrell M. Thermodynamic Characterization of Polypeptide Complex Coacervation. Langmuir 2012, 28, 15947–15957. 10.1021/la302729r. PubMed DOI
Ou Z.; Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J. Chem. Phys. 2006, 124, 154902.10.1063/1.2178803. PubMed DOI
Arnold R. The titration of polymeric acids. Journal of Colloid Science 1957, 12, 549–556. 10.1016/0095-8522(57)90060-0. DOI
Koper G. J. M.; Van Duijvenbode R. C.; Stam D. D. P. W.; Steuerle U.; Borkovec M. Synthesis and Protonation Behavior of Comblike Poly(ethyleneimine). Macromolecules 2003, 36, 2500–2507. 10.1021/ma020819s. DOI
Lunkad R.; Biehl P.; Murmiliuk A.; Blanco P. M.; Mons P.; Štěpánek M.; Schacher F. H.; Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective pKa Values of Various Polyzwitterions. Macromolecules 2022, 55, 7775–7784. 10.1021/acs.macromol.2c01121. DOI
Blanco P. M.; Achetoni M. M.; Garcés J. L.; Madurga S.; Mas F.; Baieli M. F.; Narambuena C. F. Adsorption of flexible proteins in the ’wrong side’ of the isoelectric point: Casein macropeptide as a model system. Colloids Surf., B 2022, 217, 112617.10.1016/j.colsurfb.2022.112617. PubMed DOI
Blanco P. M.; Narambuena C. F.; Madurga S.; Mas F.; Garcés J. L. Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes. Polymers 2023, 15, 2680.10.3390/polym15122680. PubMed DOI PMC
Lund M.; Jönsson B. Charge regulation in biomolecular solution. Q. Rev. Biophys. 2013, 46, 265–281. 10.1017/S003358351300005X. PubMed DOI
Narayanan Nair A. K.; Uyaver S.; Sun S. Conformational transitions of a weak polyampholyte. J. Chem. Phys. 2014, 141, 134905.10.1063/1.4897161. PubMed DOI
Ulrich S.; Seijo M.; Stoll S. A Monte Carlo Study of Weak Polyampholytes: Stiffness and Primary Structure Influences on Titration Curves and Chain Conformations. J. Phys. Chem. B 2007, 111, 8459–8467. 10.1021/jp0688658. PubMed DOI
Ulrich S.; Seijo M.; Carnal F.; Stoll S. Formation of Complexes between Nanoparticles and Weak Polyampholyte Chains. Monte Carlo Simulations. Macromolecules 2011, 44, 1661–1670. 10.1021/ma1024895. DOI
Barroso da Silva F. L.; Boström M.; Persson C. Effect of Charge Regulation and Ion–Dipole Interactions on the Selectivity of Protein–Nanoparticle Binding. Langmuir 2014, 30, 4078–4083. 10.1021/la500027f. PubMed DOI
Murmiliuk A.; Košovan P.; Janata M.; Procházka K.; Uhlík F.; Štěpánek M. Local pH and Effective pK of a Polyelectrolyte Chain: Two Names for One Quantity?. ACS Macro Lett. 2018, 7, 1243–1247. 10.1021/acsmacrolett.8b00484. PubMed DOI
Landsgesell J.; Nová L.; Rud O.; Uhlík F.; Sean D.; Hebbeker P.; Holm C.; Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter 2019, 15, 1155–1185. 10.1039/C8SM02085J. PubMed DOI
Košovan P.; Landsgesell J.; Nová L.; Uhlík F.; Beyer D.; Blanco P. M.; Staňo R.; Holm C. Reply to the ‘Comment on “Simulations of ionization equilibria in weak polyelectrolyte solutions and gels”’ by J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm and P. Košovan, Soft Matter, 2019, 15, 1155–1185. Soft Matter 2023, 19, 3522–3525. 10.1039/d3sm00155e. PubMed DOI PMC
Landsgesell J.; Hebbeker P.; Rud O.; Lunkad R.; Košovan P.; Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2020, 53, 3007–3020. 10.1021/acs.macromol.0c00260. DOI
Staňo R.; Košovan P.; Tagliabue A.; Holm C. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules 2021, 54, 4769–4781. 10.1021/acs.macromol.1c00470. DOI
Beyer D.; Košovan P.; Holm C. Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules 2022, 55, 10751–10760. 10.1021/acs.macromol.2c01916. DOI
Beyer D.; Košovan P.; Holm C. Explaining Giant Apparent p K a Shifts in Weak Polyelectrolyte Brushes. Phys. Rev. Lett. 2023, 131, 168101.10.1103/PhysRevLett.131.168101. PubMed DOI
Staňo R.; Van Lente J. J.; Lindhoud S.; Košovan P. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. Macromolecules 2024, 57, 1383.10.1021/acs.macromol.3c01209. PubMed DOI PMC
Borisov O. V.; Zhulina E. B.; Leermakers F. A.; Ballauff M.; Müller A. H. E. In Self Organized Nanostructures of Amphiphilic Block Copolymers I; Müller A. H. E., Borisov O., Eds.; Advances in Polymer Science; Springer: Berlin, Heidelberg, 2011; Vol. 241; pp 1–55.
Rathee V. S.; Sidky H.; Sikora B. J.; Whitmer J. K. Role of Associative Charging in the Entropy–Energy Balance of Polyelectrolyte Complexes. J. Am. Chem. Soc. 2018, 140, 15319–15328. 10.1021/jacs.8b08649. PubMed DOI
Voets I. K.; De Keizer A.; Cohen Stuart M. A. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009, 147–148, 300–318. 10.1016/j.cis.2008.09.012. PubMed DOI
Krogstad D. V.; Lynd N. A.; Choi S.-H.; Spruell J. M.; Hawker C. J.; Kramer E. J.; Tirrell M. V. Effects of Polymer and Salt Concentration on the Structure and Properties of Triblock Copolymer Coacervate Hydrogels. Macromolecules 2013, 46, 1512–1518. 10.1021/ma302299r. DOI
Albertazzi L.; Martinez-Veracoechea F. J.; Leenders C. M. A.; Voets I. K.; Frenkel D.; Meijer E. W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12203–12208. 10.1073/pnas.1303109110. PubMed DOI PMC
Staňo Roman R.Effect of acid-base equilibria on the association behaviour of polyelectrolytes. M.Sc. Thesis, Charles University, Prague, 2020.
Lunkad R.; Barroso da Silva F. L.; Košovan P. Both Charge-Regulation and Charge-Patch Distribution Can Drive Adsorption on the Wrong Side of the Isoelectric Point. J. Am. Chem. Soc. 2022, 144, 1813–1825. 10.1021/jacs.1c11676. PubMed DOI
Achazi K.; Haag R.; Ballauff M.; Dernedde J.; Kizhakkedathu J. N.; Maysinger D.; Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew. Chem., Int. Ed. 2021, 60, 3882–3904. 10.1002/anie.202006457. PubMed DOI PMC
Choi S.; Knoerdel A. R.; Sing C. E.; Keating C. D. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule. J. Phys. Chem. B 2023, 127, 5978–5991. 10.1021/acs.jpcb.3c02098. PubMed DOI
Digby Z. A.; Yang M.; Lteif S.; Schlenoff J. B. Salt Resistance as a Measure of the Strength of Polyelectrolyte Complexation. Macromolecules 2022, 55, 978–988. 10.1021/acs.macromol.1c02151. DOI
Choi J.; Rubner M. F. Influence of the Degree of Ionization on Weak Polyelectrolyte Multilayer Assembly. Macromolecules 2005, 38, 116–124. 10.1021/ma048596o. DOI
Petrov A. I.; Antipov A. A.; Sukhorukov G. B. Base-Acid Equilibria in Polyelectrolyte Systems: From Weak Polyelectrolytes to Interpolyelectrolyte Complexes and Multilayered Polyelectrolyte Shells. Macromolecules 2003, 36, 10079–10086. 10.1021/ma034516p. DOI
Knoerdel A. R.; Blocher McTigue W. C.; Sing C. E. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. J. Phys. Chem. B 2021, 125, 8965–8980. 10.1021/acs.jpcb.1c03065. PubMed DOI
Salehi A.; Larson R. G. A Molecular Thermodynamic Model of Complexation in Mixtures of Oppositely Charged Polyelectrolytes with Explicit Account of Charge Association/Dissociation. Macromolecules 2016, 49, 9706–9719. 10.1021/acs.macromol.6b01464. DOI
Haynes W.CRC Handbook of Chemistry and Physics, 96th ed.; CRC Press: New York, 2015.
Panagiotopoulos A. Charge correlation effects on ionization of weak polyelectrolytes. J. Phys.: Condens. Matter 2009, 21, 424113.10.1088/0953-8984/21/42/424113. PubMed DOI
Borukhov I.; Andelman D.; Borrega R.; Cloitre M.; Leibler L.; Orland H. Polyelectrolyte Titration: Theory and Experiment. J. Phys. Chem. B 2000, 104, 11027–11034. 10.1021/jp001892s. DOI
Garcés J.; Madurga S.; Borkovec M. Coupling of conformational and ionization equilibria in linear poly (ethylenimine): A study based on the site binding/rotational isomeric state (SBRIS) model. Phys. Chem. Chem. Phys. 2014, 16, 4626–4638. 10.1039/c3cp54211d. PubMed DOI
Nová L.; Uhlík F.; Košovan P. Local pH and effective pKA of weak polyelectrolytes - insights from computer simulations. Phys. Chem. Chem. Phys. 2017, 19, 14376–14387. 10.1039/C7CP00265C. PubMed DOI
Dolce C.; Mériguet G. Ionization of short weak polyelectrolytes: when size matters. Colloid Polym. Sci. 2017, 295, 279.10.1007/s00396-016-4000-x. DOI
Stephan A.; Batinica M.; Steiger J.; Hartmann P.; Zaucke F.; Bloch W.; Fabri M. LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages. Immunology 2016, 148, 420–432. 10.1111/imm.12620. PubMed DOI PMC
Moreno-Angarita A.; Aragón C. C.; Tobón G. J. Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. Journal of Translational Autoimmunity 2020, 3, 100029.10.1016/j.jtauto.2019.100029. PubMed DOI PMC
Jones G.; Hashim R.; Power D. A comparison of the strength of binding of antithrombin III, protamine and poly(l-lysine) to heparin samples of different anicoagulant activities. Biochimica et Biophysica Acta (BBA) - General Subjects 1986, 883, 69–76. 10.1016/0304-4165(86)90136-4. PubMed DOI
Sokolowska E.; Kalaska B.; Miklosz J.; Mogielnicki A. The toxicology of heparin reversal with protamine: past, present and future. Expert Opinion on Drug Metabolism & Toxicology 2016, 12, 897–909. 10.1080/17425255.2016.1194395. PubMed DOI
Schroeder M.; Hogwood J.; Gray E.; Mulloy B.; Hackett A.-M.; Johansen K. B. Protamine neutralisation of low molecular weight heparins and their oligosaccharide components. Anal. Bioanal. Chem. 2011, 399, 763–771. 10.1007/s00216-010-4220-8. PubMed DOI
Bromfield S. M.; Wilde E.; Smith D. K. Heparin sensing and binding – taking supramolecular chemistry towards clinical applications. Chem. Soc. Rev. 2013, 42, 9184–9195. 10.1039/c3cs60278h. PubMed DOI
Martin P.; Vasilyev G.; Chu G.; Boas M.; Arinstein A.; Zussman E. pH-Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1527–1536. 10.1002/polb.24898. DOI
Lacabanne D.; Boudet J.; Malär A. A.; Wu P.; Cadalbert R.; Salmon L.; Allain F. H.-T.; Meier B. H.; Wiegand T. Protein Side-Chain–DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J. Phys. Chem. B 2020, 124, 11089–11097. 10.1021/acs.jpcb.0c08150. PubMed DOI PMC
Boukadida M.; Anene A.; Jaoued-Grayaa N.; Chevalier Y.; Hbaieb S. Choice of the functional monomer of molecularly imprinted polymers: Does it rely on strong acid-base or hydrogen bonding interactions?. Colloid and Interface Science Communications 2022, 50, 100669.10.1016/j.colcom.2022.100669. DOI
Vasiliu T.; Cojocaru C.; Rotaru A.; Pricope G.; Pinteala M.; Clima L. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(L-Lysine): Experimental Study and Modeling Approach. International Journal of Molecular Sciences 2017, 18, 1291.10.3390/ijms18061291. PubMed DOI PMC
Lunkad R.; Murmiliuk A.; Hebbeker P.; Boublík M.; Tošner Z.; Štěpánek M.; Košovan P. Quantitative prediction of charge regulation in oligopeptides. Molecular Systems Design & Engineering 2021, 6, 122–131. 10.1039/D0ME00147C. DOI
Lunkad R.; Murmiliuk A.; Tošner Z.; Štěpánek M.; Košovan P. Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences. Polymers 2021, 13, 214.10.3390/polym13020214. PubMed DOI PMC
Reed C. E.; Reed W. F. Monte Carlo study of titration of linear polyelectrolytes. J. Chem. Phys. 1992, 96, 1609–1620. 10.1063/1.462145. DOI
Weik F.; Weeber R.; Szuttor K.; Breitsprecher K.; de Graaf J.; Kuron M.; Landsgesell J.; Menke H.; Sean D.; Holm C. ESPResSo 4.0 – an extensible software package for simulating soft matter systems. European Physical Journal Special Topics 2019, 227, 1789–1816. 10.1140/epjst/e2019-800186-9. DOI
Weeber R.; Grad J.-N.; Beyer D.; Blanco P. M.; Kreissl P.; Reinauer A.; Tischler I.; Košovan P.; Holm C. In Comprehensive Computational Chemistry, 1st ed.; Yáñez M., Boyd R. J., Eds.; Elsevier: Oxford, 2024; pp 578–601.