-
Je něco špatně v tomto záznamu ?
The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death
T. Vicar, M. Raudenska, J. Gumulec, J. Balvan,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- algoritmy MeSH
- apoptóza * účinky léků MeSH
- buněčná smrt * účinky léků MeSH
- buňky ultrastruktura MeSH
- časosběrné zobrazování metody MeSH
- časové faktory MeSH
- kultivované buňky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- optické zobrazování metody MeSH
- počet buněk MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cell viability and cytotoxicity assays are highly important for drug screening and cytotoxicity tests of antineoplastic or other therapeutic drugs. Even though biochemical-based tests are very helpful to obtain preliminary preview, their results should be confirmed by methods based on direct cell death assessment. In this study, time-dependent changes in quantitative phase-based parameters during cell death were determined and methodology useable for rapid and label-free assessment of direct cell death was introduced. The goal of our study was distinction between apoptosis and primary lytic cell death based on morphologic features. We have distinguished the lytic and non-lytic type of cell death according to their end-point features (Dance of Death typical for apoptosis versus swelling and membrane rupture typical for all kinds of necrosis common for necroptosis, pyroptosis, ferroptosis and accidental cell death). Our method utilizes Quantitative Phase Imaging (QPI) which enables the time-lapse observation of subtle changes in cell mass distribution. According to our results, morphological and dynamical features extracted from QPI micrographs are suitable for cell death detection (76% accuracy in comparison with manual annotation). Furthermore, based on QPI data alone and machine learning, we were able to classify typical dynamical changes of cell morphology during both caspase 3,7-dependent and -independent cell death subroutines. The main parameters used for label-free detection of these cell death modalities were cell density (pg/pixel) and average intensity change of cell pixels further designated as Cell Dynamic Score (CDS). To the best of our knowledge, this is the first study introducing CDS and cell density as a parameter typical for individual cell death subroutines with prediction accuracy 75.4% for caspase 3,7-dependent and -independent cell death.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028574
- 003
- CZ-PrNML
- 005
- 20210114154312.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-020-58474-w $2 doi
- 035 __
- $a (PubMed)32005874
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Vicar, Tomas $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic. Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic.
- 245 14
- $a The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death / $c T. Vicar, M. Raudenska, J. Gumulec, J. Balvan,
- 520 9_
- $a Cell viability and cytotoxicity assays are highly important for drug screening and cytotoxicity tests of antineoplastic or other therapeutic drugs. Even though biochemical-based tests are very helpful to obtain preliminary preview, their results should be confirmed by methods based on direct cell death assessment. In this study, time-dependent changes in quantitative phase-based parameters during cell death were determined and methodology useable for rapid and label-free assessment of direct cell death was introduced. The goal of our study was distinction between apoptosis and primary lytic cell death based on morphologic features. We have distinguished the lytic and non-lytic type of cell death according to their end-point features (Dance of Death typical for apoptosis versus swelling and membrane rupture typical for all kinds of necrosis common for necroptosis, pyroptosis, ferroptosis and accidental cell death). Our method utilizes Quantitative Phase Imaging (QPI) which enables the time-lapse observation of subtle changes in cell mass distribution. According to our results, morphological and dynamical features extracted from QPI micrographs are suitable for cell death detection (76% accuracy in comparison with manual annotation). Furthermore, based on QPI data alone and machine learning, we were able to classify typical dynamical changes of cell morphology during both caspase 3,7-dependent and -independent cell death subroutines. The main parameters used for label-free detection of these cell death modalities were cell density (pg/pixel) and average intensity change of cell pixels further designated as Cell Dynamic Score (CDS). To the best of our knowledge, this is the first study introducing CDS and cell density as a parameter typical for individual cell death subroutines with prediction accuracy 75.4% for caspase 3,7-dependent and -independent cell death.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a apoptóza $x účinky léků $7 D017209
- 650 _2
- $a počet buněk $7 D002452
- 650 12
- $a buněčná smrt $x účinky léků $7 D016923
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a buňky $x ultrastruktura $7 D002477
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a optické zobrazování $x metody $7 D061848
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a časosběrné zobrazování $x metody $7 D059008
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Raudenska, Martina $u Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic. Department of Chemistry and Biochemistry, Mendel University/Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- 700 1_
- $a Gumulec, Jaromir $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic. Department of Chemistry and Biochemistry, Mendel University/Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- 700 1_
- $a Balvan, Jan $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic. jan.balvan@med.muni.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 1566
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32005874 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154309 $b ABA008
- 999 __
- $a ok $b bmc $g 1608909 $s 1119754
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 10 $c 1 $d 1566 $e 20200131 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105