-
Je něco špatně v tomto záznamu ?
Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions
A. Tolios, J. De Las Rivas, E. Hovig, P. Trouillas, A. Scorilas, T. Mohr,
Jazyk angličtina
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- chemorezistence účinky léků MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- mnohočetná léková rezistence účinky léků MeSH
- nádorové biomarkery metabolismus MeSH
- nádory farmakoterapie metabolismus MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.
Department of Laboratory Medicine Medical University of Vienna Vienna Austria
Institute of Cancer Research Department of Medicine 1 Medical University of Vienna Vienna Austria
RCPTM University Palacký of Olomouc tr 17 listopadu 12 771 46 Olomouc Czech Republic
ScienceConsult DI Thomas Mohr KG Guntramsdorf Austria
UMR 1248 INSERM Univ Limoges 2 rue du Dr Marland 87052 Limoges France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028631
- 003
- CZ-PrNML
- 005
- 20210114154518.0
- 007
- ta
- 008
- 210105s2020 stk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.drup.2019.100662 $2 doi
- 035 __
- $a (PubMed)31927437
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a stk
- 100 1_
- $a Tolios, A $u Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Institute of Clinical Chemistry and Laboratory Medicine, Heinrich Heine University, Duesseldorf, Germany. Electronic address: alexander.tolios@meduniwien.ac.at.
- 245 10
- $a Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions / $c A. Tolios, J. De Las Rivas, E. Hovig, P. Trouillas, A. Scorilas, T. Mohr,
- 520 9_
- $a Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a protinádorové látky $x farmakologie $x terapeutické užití $7 D000970
- 650 _2
- $a nádorové biomarkery $x metabolismus $7 D014408
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a lékové transportní systémy $x metody $7 D016503
- 650 _2
- $a mnohočetná léková rezistence $x účinky léků $7 D018432
- 650 _2
- $a chemorezistence $x účinky léků $7 D019008
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nádory $x farmakoterapie $x metabolismus $7 D009369
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a De Las Rivas, J $u Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain. Electronic address: jrivas@usal.es.
- 700 1_
- $a Hovig, E $u Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital and Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway. Electronic address: ehovig@ifi.uio.no.
- 700 1_
- $a Trouillas, P $u UMR 1248 INSERM, Univ. Limoges, 2 rue du Dr Marland, 87052, Limoges, France; RCPTM, University Palacký of Olomouc, tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic. Electronic address: patrick.trouillas@unilim.fr.
- 700 1_
- $a Scorilas, A $u Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece. Electronic address: ascorilas@biol.uoa.gr.
- 700 1_
- $a Mohr, T $u Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; ScienceConsult - DI Thomas Mohr KG, Guntramsdorf, Austria. Electronic address: thomas.mohr@mohrkeg.co.at.
- 773 0_
- $w MED00166728 $t Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy $x 1532-2084 $g Roč. 48, č. - (2020), s. 100662
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31927437 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154515 $b ABA008
- 999 __
- $a ok $b bmc $g 1608966 $s 1119811
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 48 $c - $d 100662 $e 20191018 $i 1532-2084 $m Drug resistance updates $n Drug Resist Updat $x MED00166728
- LZP __
- $a Pubmed-20210105