• Je něco špatně v tomto záznamu ?

Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions

A. Tolios, J. De Las Rivas, E. Hovig, P. Trouillas, A. Scorilas, T. Mohr,

. 2020 ; 48 (-) : 100662. [pub] 20191018

Jazyk angličtina

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028631

Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028631
003      
CZ-PrNML
005      
20210114154518.0
007      
ta
008      
210105s2020 stk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.drup.2019.100662 $2 doi
035    __
$a (PubMed)31927437
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a stk
100    1_
$a Tolios, A $u Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Institute of Clinical Chemistry and Laboratory Medicine, Heinrich Heine University, Duesseldorf, Germany. Electronic address: alexander.tolios@meduniwien.ac.at.
245    10
$a Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions / $c A. Tolios, J. De Las Rivas, E. Hovig, P. Trouillas, A. Scorilas, T. Mohr,
520    9_
$a Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.
650    _2
$a zvířata $7 D000818
650    _2
$a protinádorové látky $x farmakologie $x terapeutické užití $7 D000970
650    _2
$a nádorové biomarkery $x metabolismus $7 D014408
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a lékové transportní systémy $x metody $7 D016503
650    _2
$a mnohočetná léková rezistence $x účinky léků $7 D018432
650    _2
$a chemorezistence $x účinky léků $7 D019008
650    _2
$a lidé $7 D006801
650    _2
$a nádory $x farmakoterapie $x metabolismus $7 D009369
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a De Las Rivas, J $u Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain. Electronic address: jrivas@usal.es.
700    1_
$a Hovig, E $u Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital and Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway. Electronic address: ehovig@ifi.uio.no.
700    1_
$a Trouillas, P $u UMR 1248 INSERM, Univ. Limoges, 2 rue du Dr Marland, 87052, Limoges, France; RCPTM, University Palacký of Olomouc, tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic. Electronic address: patrick.trouillas@unilim.fr.
700    1_
$a Scorilas, A $u Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece. Electronic address: ascorilas@biol.uoa.gr.
700    1_
$a Mohr, T $u Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; ScienceConsult - DI Thomas Mohr KG, Guntramsdorf, Austria. Electronic address: thomas.mohr@mohrkeg.co.at.
773    0_
$w MED00166728 $t Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy $x 1532-2084 $g Roč. 48, č. - (2020), s. 100662
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31927437 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114154515 $b ABA008
999    __
$a ok $b bmc $g 1608966 $s 1119811
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 48 $c - $d 100662 $e 20191018 $i 1532-2084 $m Drug resistance updates $n Drug Resist Updat $x MED00166728
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...