Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes

G. Forni, G. Puccio, T. Bourguignon, T. Evans, B. Mantovani, O. Rota-Stabelli, A. Luchetti,

. 2019 ; 9 (1) : 14806. [pub] 20191015

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't, Validation Study

Thousands of eukaryotes transcriptomes have been generated, mainly to investigate nuclear genes expression, and the amount of available data is constantly increasing. A neglected but promising use of this large amount of data is to assemble organelle genomes. To assess the reliability of this approach, we attempted to reconstruct complete mitochondrial genomes from RNA-Seq experiments of Reticulitermes termite species, for which transcriptomes and conspecific mitogenomes are available. We successfully assembled complete molecules, although a few gaps corresponding to tRNAs had to be filled manually. We also reconstructed, for the first time, the mitogenome of Reticulitermes banyulensis. The accuracy and completeness of mitogenomes reconstruction appeared independent from transcriptome size, read length and sequencing design (single/paired end), and using reference genomes from congeneric or intra-familial taxa did not significantly affect the assembly. Transcriptome-derived mitogenomes were found highly similar to the conspecific ones obtained from genome sequencing (nucleotide divergence ranging from 0% to 3.5%) and yielded a congruent phylogenetic tree. Reads from contaminants and nuclear transcripts, although slowing down the process, did not result in chimeric sequence reconstruction. We suggest that the described approach has the potential to increase the number of available mitogenomes by exploiting the rapidly increasing number of transcriptomes.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028792
003      
CZ-PrNML
005      
20210114155150.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-51313-7 $2 doi
035    __
$a (PubMed)31616005
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Forni, Giobbe $u Department of Biological, Geological and Environmental Sciences - University of Bologna, via Selmi 3, 40126, Bologna, Italy.
245    10
$a Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes / $c G. Forni, G. Puccio, T. Bourguignon, T. Evans, B. Mantovani, O. Rota-Stabelli, A. Luchetti,
520    9_
$a Thousands of eukaryotes transcriptomes have been generated, mainly to investigate nuclear genes expression, and the amount of available data is constantly increasing. A neglected but promising use of this large amount of data is to assemble organelle genomes. To assess the reliability of this approach, we attempted to reconstruct complete mitochondrial genomes from RNA-Seq experiments of Reticulitermes termite species, for which transcriptomes and conspecific mitogenomes are available. We successfully assembled complete molecules, although a few gaps corresponding to tRNAs had to be filled manually. We also reconstructed, for the first time, the mitogenome of Reticulitermes banyulensis. The accuracy and completeness of mitogenomes reconstruction appeared independent from transcriptome size, read length and sequencing design (single/paired end), and using reference genomes from congeneric or intra-familial taxa did not significantly affect the assembly. Transcriptome-derived mitogenomes were found highly similar to the conspecific ones obtained from genome sequencing (nucleotide divergence ranging from 0% to 3.5%) and yielded a congruent phylogenetic tree. Reads from contaminants and nuclear transcripts, although slowing down the process, did not result in chimeric sequence reconstruction. We suggest that the described approach has the potential to increase the number of available mitogenomes by exploiting the rapidly increasing number of transcriptomes.
650    _2
$a zvířata $7 D000818
650    _2
$a sekvence nukleotidů $x genetika $7 D001483
650    _2
$a data mining $x metody $7 D057225
650    12
$a genom mitochondriální $7 D054629
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a Isoptera $x genetika $7 D020049
650    _2
$a anotace sekvence $x metody $7 D058977
650    _2
$a fylogeneze $7 D010802
650    _2
$a sekvenování transkriptomu $7 D000081246
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a sekvenční analýza DNA $7 D017422
650    _2
$a transkriptom $x genetika $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a validační studie $7 D023361
700    1_
$a Puccio, Guglielmo $u Department of Biological, Geological and Environmental Sciences - University of Bologna, via Selmi 3, 40126, Bologna, Italy.
700    1_
$a Bourguignon, Thomas $u Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
700    1_
$a Evans, Theodore $u School of Animal Biology, University of Western Australia, Perth, WA, 6009, Australia.
700    1_
$a Mantovani, Barbara $u Department of Biological, Geological and Environmental Sciences - University of Bologna, via Selmi 3, 40126, Bologna, Italy.
700    1_
$a Rota-Stabelli, Omar $u Agrarian Entomology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy.
700    1_
$a Luchetti, Andrea $u Department of Biological, Geological and Environmental Sciences - University of Bologna, via Selmi 3, 40126, Bologna, Italy. andrea.luchetti@unibo.it.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 14806
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31616005 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114155148 $b ABA008
999    __
$a ok $b bmc $g 1609127 $s 1119972
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 14806 $e 20191015 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...