-
Something wrong with this record ?
Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
M. Deulofeu, L. Kolářová, V. Salvadó, E. María Peña-Méndez, M. Almáši, M. Štork, L. Pour, P. Boadas-Vaello, S. Ševčíková, J. Havel, P. Vaňhara,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Nature Open Access
from 2011-12-01
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
Springer Nature OA/Free Journals
from 2011-12-01
- MeSH
- Principal Component Analysis MeSH
- Datasets as Topic MeSH
- Immunoglobulins blood MeSH
- Bone Marrow metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Metabolic Networks and Pathways MeSH
- Metabolome * MeSH
- Multiple Myeloma blood diagnosis pathology MeSH
- Neural Networks, Computer * MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Case-Control Studies MeSH
- Artificial Intelligence * statistics & numerical data MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Chemistry Faculty of Science University of Girona Girona Spain
Department of Clinical Hematology University Hospital Brno Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
SGR 01279) Department of Medical Sciences University of Girona Girona Spain
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028902
- 003
- CZ-PrNML
- 005
- 20210114155314.0
- 007
- ta
- 008
- 210105s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-019-44215-1 $2 doi
- 035 __
- $a (PubMed)31138828
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Deulofeu, Meritxell $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain. Experimental Neurophysiology and Clinical Anatomy (NE∾ 2017 SGR 01279), Department of Medical Sciences, University of Girona, Girona, Spain.
- 245 10
- $a Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma / $c M. Deulofeu, L. Kolářová, V. Salvadó, E. María Peña-Méndez, M. Almáši, M. Štork, L. Pour, P. Boadas-Vaello, S. Ševčíková, J. Havel, P. Vaňhara,
- 520 9_
- $a Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 12
- $a umělá inteligence $x statistika a číselné údaje $7 D001185
- 650 _2
- $a kostní dřeň $x metabolismus $x patologie $7 D001853
- 650 _2
- $a studie případů a kontrol $7 D016022
- 650 _2
- $a datové soubory jako téma $7 D066264
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a imunoglobuliny $x krev $7 D007136
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a metabolické sítě a dráhy $7 D053858
- 650 12
- $a metabolom $7 D055442
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a mnohočetný myelom $x krev $x diagnóza $x patologie $7 D009101
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a analýza hlavních komponent $7 D025341
- 650 _2
- $a spektrometrie hmotnostní - ionizace laserem za účasti matrice $7 D019032
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kolářová, Lenka $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Salvadó, Victoria $u Department of Chemistry, Faculty of Science, University of Girona, Girona, Spain.
- 700 1_
- $a María Peña-Méndez, Eladia $u Department of Chemistry, Analytical Chemistry Division, Faculty of Science, University of La Laguna, La Laguna, Spain.
- 700 1_
- $a Almáši, Martina $u Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.
- 700 1_
- $a Štork, Martin $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.
- 700 1_
- $a Pour, Luděk $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.
- 700 1_
- $a Boadas-Vaello, Pere $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain. Experimental Neurophysiology and Clinical Anatomy (NE∾ 2017 SGR 01279), Department of Medical Sciences, University of Girona, Girona, Spain.
- 700 1_
- $a Ševčíková, Sabina $u Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- 700 1_
- $a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. pvanhara@med.muni.cz. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. pvanhara@med.muni.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 7975
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31138828 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114155312 $b ABA008
- 999 __
- $a ok $b bmc $g 1609237 $s 1120082
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 1 $d 7975 $e 20190528 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105