Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma

M. Deulofeu, L. Kolářová, V. Salvadó, E. María Peña-Méndez, M. Almáši, M. Štork, L. Pour, P. Boadas-Vaello, S. Ševčíková, J. Havel, P. Vaňhara,

. 2019 ; 9 (1) : 7975. [pub] 20190528

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028902

Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028902
003      
CZ-PrNML
005      
20210114155314.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-44215-1 $2 doi
035    __
$a (PubMed)31138828
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Deulofeu, Meritxell $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain. Experimental Neurophysiology and Clinical Anatomy (NE∾ 2017 SGR 01279), Department of Medical Sciences, University of Girona, Girona, Spain.
245    10
$a Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma / $c M. Deulofeu, L. Kolářová, V. Salvadó, E. María Peña-Méndez, M. Almáši, M. Štork, L. Pour, P. Boadas-Vaello, S. Ševčíková, J. Havel, P. Vaňhara,
520    9_
$a Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    12
$a umělá inteligence $x statistika a číselné údaje $7 D001185
650    _2
$a kostní dřeň $x metabolismus $x patologie $7 D001853
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a datové soubory jako téma $7 D066264
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a imunoglobuliny $x krev $7 D007136
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a metabolické sítě a dráhy $7 D053858
650    12
$a metabolom $7 D055442
650    _2
$a lidé středního věku $7 D008875
650    _2
$a mnohočetný myelom $x krev $x diagnóza $x patologie $7 D009101
650    12
$a neuronové sítě $7 D016571
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a spektrometrie hmotnostní - ionizace laserem za účasti matrice $7 D019032
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kolářová, Lenka $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Salvadó, Victoria $u Department of Chemistry, Faculty of Science, University of Girona, Girona, Spain.
700    1_
$a María Peña-Méndez, Eladia $u Department of Chemistry, Analytical Chemistry Division, Faculty of Science, University of La Laguna, La Laguna, Spain.
700    1_
$a Almáši, Martina $u Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.
700    1_
$a Štork, Martin $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.
700    1_
$a Pour, Luděk $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.
700    1_
$a Boadas-Vaello, Pere $u Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain. Experimental Neurophysiology and Clinical Anatomy (NE∾ 2017 SGR 01279), Department of Medical Sciences, University of Girona, Girona, Spain.
700    1_
$a Ševčíková, Sabina $u Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
700    1_
$a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. pvanhara@med.muni.cz. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. pvanhara@med.muni.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 7975
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31138828 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114155312 $b ABA008
999    __
$a ok $b bmc $g 1609237 $s 1120082
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 7975 $e 20190528 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...