Drug Resistance in Non-Hodgkin Lymphomas
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AZV 17-28980A
Ministerstvo Zdravotnictví Ceské Republiky
GA20-25308S
Grantová Agentura České Republiky
Center of Excellence UNCE/MED/16
Univerzita Karlova v Praze
PRIMUS 19/MED/07
Univerzita Karlova v Praze
PROGRES Q26/LF1
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q28/LF1
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32197371
PubMed Central
PMC7139754
DOI
10.3390/ijms21062081
PII: ijms21062081
Knihovny.cz E-zdroje
- Klíčová slova
- chemotherapy, drug resistance, non-Hodgkin lymphomas, targeted agents,
- MeSH
- antitumorózní látky škodlivé účinky terapeutické užití MeSH
- chemorezistence * MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nehodgkinský lymfom * klasifikace metabolismus patologie terapie MeSH
- záchranná terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- nádorové biomarkery MeSH
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients' outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Zobrazit více v PubMed
Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Swerdlow S.H., Cook J.R. As the world turns, evolving lymphoma classifications-past, present and future. Hum. Pathol. 2019 doi: 10.1016/j.humpath.2019.08.019. PubMed DOI
Ultmann J.E. The management of lymphoma. CA A Cancer J. Clin. 1971;21:342–359. doi: 10.3322/canjclin.21.6.342. PubMed DOI
Luce J.K., Gamble J.F., Wilson H.E., Monto R.W., Isaacs B.L., Palmer R.L., Coltman C.A., Jr., Hewlett J.S., Gehan E.A., Frei E., 3rd. Combined cyclophosphamide vincristine, and prednisone therapy of malignant lymphoma. Cancer. 1971;28:306–317. doi: 10.1002/1097-0142(197108)28:2<306::AID-CNCR2820280208>3.0.CO;2-N. PubMed DOI
Benjamin R.S. Adriamycin and other anthracycline antibiotics under study in the United States. Recent Results Cancer Res. Fortschr. Der Krebsforsch. Prog. Dans Les Rech. Sur Le Cancer. 1978;63:230–240. doi: 10.1007/978-3-642-81219-4_21. PubMed DOI
O’Dwyer P.J., Leyland-Jones B., Alonso M.T., Marsoni S., Wittes R.E. Etoposide (VP-16-213). Current status of an active anticancer drug. N. Engl. J. Med. 1985;312:692–700. doi: 10.1056/NEJM198503143121106. PubMed DOI
Bonadonna G. Chemotherapy of malignant lymphomas. Semin. Oncol. 1985;12:1–14. PubMed
Chun H.G., Leyland-Jones B., Cheson B.D. Fludarabine phosphate: A synthetic purine antimetabolite with significant activity against lymphoid malignancies. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1991;9:175–188. doi: 10.1200/JCO.1991.9.1.175. PubMed DOI
Maloney D.G., Grillo-Lopez A.J., Bodkin D.J., White C.A., Liles T.M., Royston I., Varns C., Rosenberg J., Levy R. IDEC-C2B8: Results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1997;15:3266–3274. doi: 10.1200/JCO.1997.15.10.3266. PubMed DOI
Pierpont T.M., Limper C.B., Richards K.L. Past, Present, and Future of Rituximab-The World’s First Oncology Monoclonal Antibody Therapy. Front. Oncol. 2018;8:163. doi: 10.3389/fonc.2018.00163. PubMed DOI PMC
Coiffier B., Haioun C., Ketterer N., Engert A., Tilly H., Ma D., Johnson P., Lister A., Feuring-Buske M., Radford J.A., et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: A multicenter phase II study. Blood. 1998;92:1927–1932. PubMed
Coiffier B., Lepage E., Briere J., Herbrecht R., Tilly H., Bouabdallah R., Morel P., Van Den Neste E., Salles G., Gaulard P., et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002;346:235–242. doi: 10.1056/NEJMoa011795. PubMed DOI
Vose J.M., Link B.K., Grossbard M.L., Czuczman M., Grillo-Lopez A., Gilman P., Lowe A., Kunkel L.A., Fisher R.I. Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001;19:389–397. doi: 10.1200/JCO.2001.19.2.389. PubMed DOI
Czuczman M.S., Grillo-Lopez A.J., White C.A., Saleh M., Gordon L., LoBuglio A.F., Jonas C., Klippenstein D., Dallaire B., Varns C. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999;17:268–276. doi: 10.1200/JCO.1999.17.1.268. PubMed DOI
Salles G., Seymour J.F., Offner F., Lopez-Guillermo A., Belada D., Xerri L., Feugier P., Bouabdallah R., Catalano J.V., Brice P., et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): A phase 3, randomised controlled trial. Lancet. 2011;377:42–51. doi: 10.1016/S0140-6736(10)62175-7. PubMed DOI
Le Gouill S., Thieblemont C., Oberic L., Moreau A., Bouabdallah K., Dartigeas C., Damaj G., Gastinne T., Ribrag V., Feugier P., et al. Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma. N. Engl. J. Med. 2017;377:1250–1260. doi: 10.1056/NEJMoa1701769. PubMed DOI
Freedman A., Jacobsen E. Follicular lymphoma: 2020 update on diagnosis and management. Am. J. Hematol. 2019 doi: 10.1002/ajh.25696. PubMed DOI
Lossos C., Liu Y., Kolb K.E., Christie A.L., Van Scoyk A., Prakadan S.M., Shigemori K., Stevenson K.E., Morrow S., Plana O.D., et al. Mechanisms of Lymphoma Clearance Induced by High-Dose Alkylating Agents. Cancer Discov. 2019;9:944–961. doi: 10.1158/2159-8290.CD-18-1393. PubMed DOI PMC
Leidi M., Gotti E., Bologna L., Miranda E., Rimoldi M., Sica A., Roncalli M., Palumbo G.A., Introna M., Golay J. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J. Immunol. 2009;182:4415–4422. doi: 10.4049/jimmunol.0713732. PubMed DOI
Thomas A., Teicher B.A., Hassan R. Antibody-drug conjugates for cancer therapy. Lancet. Oncol. 2016;17:e254–e262. doi: 10.1016/S1470-2045(16)30030-4. PubMed DOI PMC
Pro B., Advani R., Brice P., Bartlett N.L., Rosenblatt J.D., Illidge T., Matous J., Ramchandren R., Fanale M., Connors J.M., et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: Results of a phase II study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012;30:2190–2196. doi: 10.1200/JCO.2011.38.0402. PubMed DOI
Horwitz S., O’Connor O.A., Pro B., Illidge T., Fanale M., Advani R., Bartlett N.L., Christensen J.H., Morschhauser F., Domingo-Domenech E., et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–240. doi: 10.1016/S0140-6736(18)32984-2. PubMed DOI PMC
Forero-Torres A., Leonard J.P., Younes A., Rosenblatt J.D., Brice P., Bartlett N.L., Bosly A., Pinter-Brown L., Kennedy D., Sievers E.L., et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br. J. Haematol. 2009;146:171–179. doi: 10.1111/j.1365-2141.2009.07740.x. PubMed DOI
Prince H.M., Kim Y.H., Horwitz S.M., Dummer R., Scarisbrick J., Quaglino P., Zinzani P.L., Wolter P., Sanches J.A., Ortiz-Romero P.L., et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): An international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390:555–566. doi: 10.1016/S0140-6736(17)31266-7. PubMed DOI
Sehn L.H., Herrera A.F., Flowers C.R., Kamdar M.K., McMillan A., Hertzberg M., Assouline S., Kim T.M., Kim W.S., Ozcan M., et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019 doi: 10.1200/JCO.19.00172. PubMed DOI PMC
Dhillon S. Moxetumomab Pasudotox: First Global Approval. Drugs. 2018;78:1763–1767. doi: 10.1007/s40265-018-1000-9. PubMed DOI PMC
Kantarjian H.M., DeAngelo D.J., Stelljes M., Martinelli G., Liedtke M., Stock W., Gokbuget N., O’Brien S., Wang K., Wang T., et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016;375:740–753. doi: 10.1056/NEJMoa1509277. PubMed DOI PMC
Yu B., Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J. Hematol. Oncol. 2019;12:94. doi: 10.1186/s13045-019-0786-6. PubMed DOI PMC
Druker B.J., Talpaz M., Resta D.J., Peng B., Buchdunger E., Ford J.M., Lydon N.B., Kantarjian H., Capdeville R., Ohno-Jones S., et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 2001;344:1031–1037. doi: 10.1056/NEJM200104053441401. PubMed DOI
Druker B.J., Sawyers C.L., Kantarjian H., Resta D.J., Reese S.F., Ford J.M., Capdeville R., Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 2001;344:1038–1042. doi: 10.1056/NEJM200104053441402. PubMed DOI
Treon S.P., Tripsas C.K., Meid K., Warren D., Varma G., Green R., Argyropoulos K.V., Yang G., Cao Y., Xu L., et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N. Engl. J. Med. 2015;372:1430–1440. doi: 10.1056/NEJMoa1501548. PubMed DOI
Wang M.L., Rule S., Martin P., Goy A., Auer R., Kahl B.S., Jurczak W., Advani R.H., Romaguera J.E., Williams M.E., et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 2013;369:507–516. doi: 10.1056/NEJMoa1306220. PubMed DOI PMC
Owen C., Berinstein N.L., Christofides A., Sehn L.H. Review of Bruton tyrosine kinase inhibitors for the treatment of relapsed or refractory mantle cell lymphoma. Curr. Oncol. 2019;26:e233–e240. doi: 10.3747/co.26.4345. PubMed DOI PMC
Gopal A.K., Kahl B.S., de Vos S., Wagner-Johnston N.D., Schuster S.J., Jurczak W.J., Flinn I.W., Flowers C.R., Martin P., Viardot A., et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 2014;370:1008–1018. doi: 10.1056/NEJMoa1314583. PubMed DOI PMC
Dreyling M., Morschhauser F., Bouabdallah K., Bron D., Cunningham D., Assouline S.E., Verhoef G., Linton K., Thieblemont C., Vitolo U., et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2017;28:2169–2178. doi: 10.1093/annonc/mdx289. PubMed DOI PMC
Dreyling M., Santoro A., Mollica L., Leppa S., Follows G.A., Lenz G., Kim W.S., Nagler A., Panayiotidis P., Demeter J., et al. Phosphatidylinositol 3-Kinase Inhibition by Copanlisib in Relapsed or Refractory Indolent Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017;35:3898–3905. doi: 10.1200/JCO.2017.75.4648. PubMed DOI
Dreyling M., Santoro A., Mollica L., Leppa S., Follows G., Lenz G., Kim W.S., Nagler A., Dimou M., Demeter J., et al. Long-term safety and efficacy of the PI3K inhibitor copanlisib in patients with relapsed or refractory indolent lymphoma: 2-year follow-up of the CHRONOS-1 study. Am. J. Hematol. 2019 doi: 10.1002/ajh.25711. PubMed DOI
Patel K., Danilov A.V., Pagel J.M. Duvelisib for CLL/SLL and follicular non-Hodgkin lymphoma. Blood. 2019;134:1573–1577. doi: 10.1182/blood.2019001795. PubMed DOI PMC
Flinn I.W., Miller C.B., Ardeshna K.M., Tetreault S., Assouline S.E., Mayer J., Merli M., Lunin S.D., Pettitt A.R., Nagy Z., et al. DYNAMO: A Phase II Study of Duvelisib (IPI-145) in Patients With Refractory Indolent Non-Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019;37:912–922. doi: 10.1200/JCO.18.00915. PubMed DOI
von Keudell G., Moskowitz A.J. The Role of PI3K Inhibition in Lymphoid Malignancies. Curr. Hematol. Malig. Rep. 2019;14:405–413. doi: 10.1007/s11899-019-00540-w. PubMed DOI
Lemm E.A., Valle-Argos B., Smith L.D., Richter J., Gebreselassie Y., Carter M.J., Karolova J., Svaton M., Helman K., Weston-Bell N.J., et al. Preclinical evaluation of a novel SHIP1 phosphatase activator for inhibition of PI3K signaling in malignant B-cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019 doi: 10.1158/1078-0432.CCR-19-2202. PubMed DOI PMC
Calimeri T., Ferreri A.J.M. m-TOR inhibitors and their potential role in haematological malignancies. Br. J. Haematol. 2017;177:684–702. doi: 10.1111/bjh.14529. PubMed DOI
Jiang Y., Redmond D., Nie K., Eng K.W., Clozel T., Martin P., Tan L.H., Melnick A.M., Tam W., Elemento O. Deep sequencing reveals clonal evolution patterns and mutation events associated with relapse in B-cell lymphomas. Genome Biol. 2014;15:432. doi: 10.1186/s13059-014-0432-0. PubMed DOI PMC
Juskevicius D., Lorber T., Gsponer J., Perrina V., Ruiz C., Stenner-Liewen F., Dirnhofer S., Tzankov A. Distinct genetic evolution patterns of relapsing diffuse large B-cell lymphoma revealed by genome-wide copy number aberration and targeted sequencing analysis. Leukemia. 2016;30:2385–2395. doi: 10.1038/leu.2016.135. PubMed DOI
Juskevicius D., Dirnhofer S., Tzankov A. Genetic background and evolution of relapses in aggressive B-cell lymphomas. Haematologica. 2017;102:1139–1149. doi: 10.3324/haematol.2016.151647. PubMed DOI PMC
Izzo F., Landau D.A. Genetic and epigenetic determinants of B-cell lymphoma evolution. Curr. Opin. Hematol. 2016;23:392–401. doi: 10.1097/MOH.0000000000000258. PubMed DOI
Chapuy B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018;24:679–690. doi: 10.1038/s41591-018-0016-8. PubMed DOI PMC
Schmitz R., Wright G.W., Huang D.W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018;378:1396–1407. doi: 10.1056/NEJMoa1801445. PubMed DOI PMC
Zhang J., Dominguez-Sola D., Hussein S., Lee J.E., Holmes A.B., Bansal M., Vlasevska S., Mo T., Tang H., Basso K., et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 2015;21:1190–1198. doi: 10.1038/nm.3940. PubMed DOI PMC
Beguelin W., Popovic R., Teater M., Jiang Y., Bunting K.L., Rosen M., Shen H., Yang S.N., Wang L., Ezponda T., et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23:677–692. doi: 10.1016/j.ccr.2013.04.011. PubMed DOI PMC
Chan F.C., Lim E., Kridel R., Steidl C. Novel insights into the disease dynamics of B-cell lymphomas in the Genomics Era. J. Pathol. 2018;244:598–609. doi: 10.1002/path.5043. PubMed DOI
Fernandez-de-Cossio-Diaz J., Mulet R., Vazquez A. Cell population heterogeneity driven by stochastic partition and growth optimality. Sci. Rep. 2019;9:9406. doi: 10.1038/s41598-019-45882-w. PubMed DOI PMC
Schurch C.M., Federmann B., Quintanilla-Martinez L., Fend F. Tumor Heterogeneity in Lymphomas: A Different Breed. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2018;85:130–145. doi: 10.1159/000475530. PubMed DOI
Russo M., Crisafulli G., Sogari A., Reilly N.M., Arena S., Lamba S., Bartolini A., Amodio V., Magri A., Novara L., et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366:1473–1480. doi: 10.1126/science.aav4474. PubMed DOI
Sharma S.V., Lee D.Y., Li B., Quinlan M.P., Takahashi F., Maheswaran S., McDermott U., Azizian N., Zou L., Fischbach M.A., et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80. doi: 10.1016/j.cell.2010.02.027. PubMed DOI PMC
Batlle E., Clevers H. Cancer stem cells revisited. Nat. Med. 2017;23:1124–1134. doi: 10.1038/nm.4409. PubMed DOI
Meacham C.E., Morrison S.J. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–337. doi: 10.1038/nature12624. PubMed DOI PMC
Siddique H.R., Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: Preclinical and clinical evidences. Stem Cells. 2012;30:372–378. doi: 10.1002/stem.1035. PubMed DOI
Rouhigharabaei L., Ferreiro J.F., Put N., Michaux L., Tousseyn T., Lefebvre C., Gardiner A., De Kelver W., Demuynck H., Verschuere J., et al. BMI1, the polycomb-group gene, is recurrently targeted by genomic rearrangements in progressive B-cell leukemia/lymphoma. Genes Chromosomes Cancer. 2013;52:928–944. doi: 10.1002/gcc.22088. PubMed DOI
Bea S., Tort F., Pinyol M., Puig X., Hernandez L., Hernandez S., Fernandez P.L., van Lohuizen M., Colomer D., Campo E. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res. 2001;61:2409–2412. PubMed
Teshima K., Nara M., Watanabe A., Ito M., Ikeda S., Hatano Y., Oshima K., Seto M., Sawada K., Tagawa H. Dysregulation of BMI1 and microRNA-16 collaborate to enhance an anti-apoptotic potential in the side population of refractory mantle cell lymphoma. Oncogene. 2014;33:2191–2203. doi: 10.1038/onc.2013.177. PubMed DOI
AlJohani N., Choi S.J., Day A.G., Alhejaily A., Virk S., Baetz T., LeBrun D.P. Abundant expression of BMI1 in follicular lymphoma is associated with reduced overall survival. Leuk. Lymphoma. 2018;59:2211–2219. doi: 10.1080/10428194.2017.1410883. PubMed DOI
Jung H.J., Chen Z., Fayad L., Wang M., Romaguera J., Kwak L.W., McCarty N. Bortezomib-resistant nuclear factor kappaB expression in stem-like cells in mantle cell lymphoma. Exp. Hematol. 2012;40:107-118.e2. doi: 10.1016/j.exphem.2011.10.004. PubMed DOI PMC
Wu C., Gupta N., Huang Y.H., Zhang H.F., Alshareef A., Chow A., Lai R. Oxidative stress enhances tumorigenicity and stem-like features via the activation of the Wnt/beta-catenin/MYC/Sox2 axis in ALK-positive anaplastic large-cell lymphoma. BMC Cancer. 2018;18:361. doi: 10.1186/s12885-018-4300-2. PubMed DOI PMC
Stief S.M., Hanneforth A.L., Weser S., Mattes R., Carlet M., Liu W.H., Bartoschek M.D., Dominguez Moreno H., Oettle M., Kempf J., et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia. 2019;34:50–62. doi: 10.1038/s41375-019-0497-6. PubMed DOI PMC
Abraham A., Varatharajan S., Abbas S., Zhang W., Shaji R.V., Ahmed R., Abraham A., George B., Srivastava A., Chandy M., et al. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics. 2012;13:269–282. doi: 10.2217/pgs.11.149. PubMed DOI
Klanova M., Lorkova L., Vit O., Maswabi B., Molinsky J., Pospisilova J., Vockova P., Mavis C., Lateckova L., Kulvait V., et al. Downregulation of deoxycytidine kinase in cytarabine-resistant mantle cell lymphoma cells confers cross-resistance to nucleoside analogs gemcitabine, fludarabine and cladribine, but not to other classes of anti-lymphoma agents. Mol. Cancer. 2014;13:159. doi: 10.1186/1476-4598-13-159. PubMed DOI PMC
Miller T.P., Grogan T.M., Dalton W.S., Spier C.M., Scheper R.J., Salmon S.E. P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1991;9:17–24. doi: 10.1200/JCO.1991.9.1.17. PubMed DOI
Choudhary G.S., Al-Harbi S., Mazumder S., Hill B.T., Smith M.R., Bodo J., Hsi E.D., Almasan A. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015;6:e1593. doi: 10.1038/cddis.2014.525. PubMed DOI PMC
Mizuno H., Nakayama T., Miyata Y., Saito S., Nishiwaki S., Nakao N., Takeshita K., Naoe T. Mast cells promote the growth of Hodgkin’s lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia. 2012;26:2269–2276. doi: 10.1038/leu.2012.81. PubMed DOI
King R.L., Goodlad J.R., Calaminici M., Dotlic S., Montes-Moreno S., Oschlies I., Ponzoni M., Traverse-Glehen A., Ott G., Ferry J.A. Lymphomas arising in immune-privileged sites: Insights into biology, diagnosis, and pathogenesis. Virchows Arch. Int. J. Pathol. 2019 doi: 10.1007/s00428-019-02698-3. PubMed DOI
Etrych T., Daumova L., Pokorna E., Tuskova D., Lidicky O., Kolarova V., Pankrac J., Sefc L., Chytil P., Klener P. Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging. J. Control. Release Off. J. Control. Release Soc. 2018;289:44–55. doi: 10.1016/j.jconrel.2018.09.018. PubMed DOI
Lancet J.E., Uy G.L., Cortes J.E., Newell L.F., Lin T.L., Ritchie E.K., Stuart R.K., Strickland S.A., Hogge D., Solomon S.R., et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018;36:2684–2692. doi: 10.1200/JCO.2017.77.6112. PubMed DOI PMC
Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–273. doi: 10.1038/nature13034. PubMed DOI PMC
Jing X., Yang F., Shao C., Wei K., Xie M., Shen H., Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer. 2019;18:157. doi: 10.1186/s12943-019-1089-9. PubMed DOI PMC
Matolay O., Mehes G. Sustain, Adapt, and Overcome-Hypoxia Associated Changes in the Progression of Lymphatic Neoplasia. Front. Oncol. 2019;9:1277. doi: 10.3389/fonc.2019.01277. PubMed DOI PMC
Corbet C., Feron O. Tumour acidosis: From the passenger to the driver’s seat. Nat. Rev. Cancer. 2017;17:577–593. doi: 10.1038/nrc.2017.77. PubMed DOI
Damgaci S., Ibrahim-Hashim A., Enriquez-Navas P.M., Pilon-Thomas S., Guvenis A., Gillies R.J. Hypoxia and acidosis: Immune suppressors and therapeutic targets. Immunology. 2018;154:354–362. doi: 10.1111/imm.12917. PubMed DOI PMC
Puissant A., Robert G., Auberger P. Targeting autophagy to fight hematopoietic malignancies. Cell Cycle. 2010;9:3470–3478. doi: 10.4161/cc.9.17.13048. PubMed DOI
Ricci J.E., Chiche J. Metabolic Reprogramming of Non-Hodgkin’s B-Cell Lymphomas and Potential Therapeutic Strategies. Front. Oncol. 2018;8:556. doi: 10.3389/fonc.2018.00556. PubMed DOI PMC
Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–270. PubMed
Potter M., Newport E., Morten K.J. The Warburg effect: 80 years on. Biochem. Soc. Trans. 2016;44:1499–1505. doi: 10.1042/BST20160094. PubMed DOI PMC
Burns J.S., Manda G. Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int. J. Mol. Sci. 2017;18:2755. doi: 10.3390/ijms18122755. PubMed DOI PMC
Jeon S.M., Chandel N.S., Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661–665. doi: 10.1038/nature11066. PubMed DOI PMC
Monti S., Savage K.J., Kutok J.L., Feuerhake F., Kurtin P., Mihm M., Wu B., Pasqualucci L., Neuberg D., Aguiar R.C., et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105:1851–1861. doi: 10.1182/blood-2004-07-2947. PubMed DOI
Chiche J., Reverso-Meinietti J., Mouchotte A., Rubio-Patino C., Mhaidly R., Villa E., Bossowski J.P., Proics E., Grima-Reyes M., Paquet A., et al. GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors. Cell Metab. 2019;29:1243–1257.e10. doi: 10.1016/j.cmet.2019.02.002. PubMed DOI
Le A., Lane A.N., Hamaker M., Bose S., Gouw A., Barbi J., Tsukamoto T., Rojas C.J., Slusher B.S., Zhang H., et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15:110–121. doi: 10.1016/j.cmet.2011.12.009. PubMed DOI PMC
Klanova M., Soukup T., Jaksa R., Molinsky J., Lateckova L., Maswabi B.C., Prukova D., Brezinova J., Michalova K., Vockova P., et al. Mouse models of mantle cell lymphoma, complex changes in gene expression and phenotype of engrafted MCL cells: Implications for preclinical research. Lab Investig. 2014;94:806–817. doi: 10.1038/labinvest.2014.61. PubMed DOI
Wilson W.H., Bates S.E., Fojo A., Bryant G., Zhan Z., Regis J., Wittes R.E., Jaffe E.S., Steinberg S.M., Herdt J., et al. Controlled trial of dexverapamil, a modulator of multidrug resistance, in lymphomas refractory to EPOCH chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995;13:1995–2004. doi: 10.1200/JCO.1995.13.8.1995. PubMed DOI
Dalton W.S., Grogan T.M., Meltzer P.S., Scheper R.J., Durie B.G., Taylor C.W., Miller T.P., Salmon S.E. Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1989;7:415–424. doi: 10.1200/JCO.1989.7.4.415. PubMed DOI
Taylor S., Spugnini E.P., Assaraf Y.G., Azzarito T., Rauch C., Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2015;23:69–78. doi: 10.1016/j.drup.2015.08.004. PubMed DOI
Perez-Hernandez M., Arias A., Martinez-Garcia D., Perez-Tomas R., Quesada R., Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers. 2019;11:1599. doi: 10.3390/cancers11101599. PubMed DOI PMC
Tseng C.H. Metformin is associated with a lower risk of non-Hodgkin lymphoma in patients with type 2 diabetes. Diabetes Metab. 2019;45:458–464. doi: 10.1016/j.diabet.2019.05.002. PubMed DOI
Wynn A., Vacheron A., Zuber J., Solomon S.S. Metformin Associated With Increased Survival in Type 2 Diabetes Patients With Pancreatic Cancer and Lymphoma. Am. J. Med Sci. 2019;358:200–203. doi: 10.1016/j.amjms.2019.06.002. PubMed DOI PMC
Parvin S., Ramirez-Labrada A., Aumann S., Lu X., Weich N., Santiago G., Cortizas E.M., Sharabi E., Zhang Y., Sanchez-Garcia I., et al. LMO2 Confers Synthetic Lethality to PARP Inhibition in DLBCL. Cancer Cell. 2019;36:237–249.e6. doi: 10.1016/j.ccell.2019.07.007. PubMed DOI PMC
Chen S.H., Chang J.Y. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int. J. Mol. Sci. 2019;20:4136. doi: 10.3390/ijms20174136. PubMed DOI PMC
Galluzzi L., Senovilla L., Vitale I., Michels J., Martins I., Kepp O., Castedo M., Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–1883. doi: 10.1038/onc.2011.384. PubMed DOI
Takagi M. DNA damage response and hematological malignancy. Int. J. Hematol. 2017;106:345–356. doi: 10.1007/s12185-017-2226-0. PubMed DOI
Xu-Monette Z.Y., Medeiros L.J., Li Y., Orlowski R.Z., Andreeff M., Bueso-Ramos C.E., Greiner T.C., McDonnell T.J., Young K.H. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119:3668–3683. doi: 10.1182/blood-2011-11-366062. PubMed DOI PMC
Onaindia A., Medeiros L.J., Patel K.P. Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod. Pathol. 2017;30:1338–1366. doi: 10.1038/modpathol.2017.58. PubMed DOI
Klanova M., Sehn L.H., Bence-Bruckler I., Cavallo F., Jin J., Martelli M., Stewart D., Vitolo U., Zaja F., Zhang Q., et al. Integration of cell of origin into the clinical CNS International Prognostic Index improves CNS relapse prediction in DLBCL. Blood. 2019;133:919–926. doi: 10.1182/blood-2018-07-862862. PubMed DOI PMC
Jardin F., Jais J.P., Molina T.J., Parmentier F., Picquenot J.M., Ruminy P., Tilly H., Bastard C., Salles G.A., Feugier P., et al. Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: A GELA study. Blood. 2010;116:1092–1104. doi: 10.1182/blood-2009-10-247122. PubMed DOI
Delfau-Larue M.H., Klapper W., Berger F., Jardin F., Briere J., Salles G., Casasnovas O., Feugier P., Haioun C., Ribrag V., et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood. 2015;126:604–611. doi: 10.1182/blood-2015-02-628792. PubMed DOI
Leich E., Salaverria I., Bea S., Zettl A., Wright G., Moreno V., Gascoyne R.D., Chan W.C., Braziel R.M., Rimsza L.M., et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114:826–834. doi: 10.1182/blood-2009-01-198580. PubMed DOI PMC
Klanova M., Andera L., Brazina J., Svadlenka J., Benesova S., Soukup J., Prukova D., Vejmelkova D., Jaksa R., Helman K., et al. Targeting of BCL2 Family Proteins with ABT-199 and Homoharringtonine Reveals BCL2- and MCL1-Dependent Subgroups of Diffuse Large B-Cell Lymphoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015 doi: 10.1158/1078-0432.CCR-15-1191. PubMed DOI
Prukova D., Andera L., Nahacka Z., Karolova J., Svaton M., Klanova M., Havranek O., Soukup J., Svobodova K., Zemanova Z., et al. Co-targeting of BCL2 with venetoclax and MCL1 with S63845 is synthetically lethal in vivo in relapsed mantle cell lymphoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019 doi: 10.1158/1078-0432.CCR-18-3275. PubMed DOI
Wang J.D., Katz S.G., Morgan E.A., Yang D.T., Pan X., Xu M.L. Proapoptotic protein BIM as a novel prognostic marker in mantle cell lymphoma. Hum. Pathol. 2019;93:54–64. doi: 10.1016/j.humpath.2019.08.008. PubMed DOI PMC
Rossi D., Fangazio M., Rasi S., Vaisitti T., Monti S., Cresta S., Chiaretti S., Del Giudice I., Fabbri G., Bruscaggin A., et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119:2854–2862. doi: 10.1182/blood-2011-12-395673. PubMed DOI
Ho C.J., Gorski S.M. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers. 2019;11:1775. doi: 10.3390/cancers11111775. PubMed DOI PMC
Zhang H. Targeting autophagy in lymphomas: A double-edged sword? Int. J. Hematol. 2018;107:502–512. doi: 10.1007/s12185-018-2414-6. PubMed DOI
Yan J., Zhang J., Zhang X., Li X., Li L., Li Z., Chen R., Zhang L., Wu J., Wang X., et al. AEG-1 is involved in hypoxia-induced autophagy and decreases chemosensitivity in T-cell lymphoma. Mol. Med. 2018;24:35. doi: 10.1186/s10020-018-0033-6. PubMed DOI PMC
Zhang H., Chen Z., Miranda R.N., Medeiros L.J., McCarty N. TG2 and NF-kappaB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res. 2016;76:6410–6423. doi: 10.1158/0008-5472.CAN-16-0595. PubMed DOI PMC
Rosich L., Xargay-Torrent S., Lopez-Guerra M., Campo E., Colomer D., Roue G. Counteracting autophagy overcomes resistance to everolimus in mantle cell lymphoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012;18:5278–5289. doi: 10.1158/1078-0432.CCR-12-0351. PubMed DOI
Chen Z., Teo A.E., McCarty N. ROS-Induced CXCR4 Signaling Regulates Mantle Cell Lymphoma (MCL) Cell Survival and Drug Resistance in the Bone Marrow Microenvironment via Autophagy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016;22:187–199. doi: 10.1158/1078-0432.CCR-15-0987. PubMed DOI PMC
Lamba J.K. Genetic factors influencing cytarabine therapy. Pharmacogenomics. 2009;10:1657–1674. doi: 10.2217/pgs.09.118. PubMed DOI PMC
Marce S., Molina-Arcas M., Villamor N., Casado F.J., Campo E., Pastor-Anglada M., Colomer D. Expression of human equilibrative nucleoside transporter 1 (hENT1) and its correlation with gemcitabine uptake and cytotoxicity in mantle cell lymphoma. Haematologica. 2006;91:895–902. PubMed
Hermine O., Hoster E., Walewski J., Bosly A., Stilgenbauer S., Thieblemont C., Szymczyk M., Bouabdallah R., Kneba M., Hallek M., et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): A randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet. 2016;388:565–575. doi: 10.1016/s0140-6736(16)00739-x. PubMed DOI
Lorkova L., Scigelova M., Arrey T.N., Vit O., Pospisilova J., Doktorova E., Klanova M., Alam M., Vockova P., Maswabi B., et al. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS ONE. 2015;10:e0135314. doi: 10.1371/journal.pone.0135314. PubMed DOI PMC
Freiburghaus C., Emruli V.K., Johansson A., Eskelund C.W., Gronbaek K., Olsson R., Ek F., Jerkeman M., Ek S. Bortezomib prevents cytarabine resistance in MCL, which is characterized by down-regulation of dCK and up-regulation of SPIB resulting in high NF-kappaB activity. BMC Cancer. 2018;18:466. doi: 10.1186/s12885-018-4346-1. PubMed DOI PMC
Rossi D., Bruscaggin A., Spina V., Rasi S., Khiabanian H., Messina M., Fangazio M., Vaisitti T., Monti S., Chiaretti S., et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: Association with progression and fludarabine-refractoriness. Blood. 2011;118:6904–6908. doi: 10.1182/blood-2011-08-373159. PubMed DOI PMC
Saba N.S., Liu D., Herman S.E., Underbayev C., Tian X., Behrend D., Weniger M.A., Skarzynski M., Gyamfi J., Fontan L., et al. Pathogenic role of B-cell receptor signaling and canonical NF-kappaB activation in mantle cell lymphoma. Blood. 2016;128:82–92. doi: 10.1182/blood-2015-11-681460. PubMed DOI PMC
Bernard S., Danglade D., Gardano L., Laguillier C., Lazarian G., Roger C., Thieblemont C., Marzec J., Gribben J., Cymbalista F., et al. Inhibitors of BCR signalling interrupt the survival signal mediated by the micro-environment in mantle cell lymphoma. Int. J. Cancer. 2015;136:2761–2774. doi: 10.1002/ijc.29326. PubMed DOI
Chang B.Y., Francesco M., De Rooij M.F., Magadala P., Steggerda S.M., Huang M.M., Kuil A., Herman S.E., Chang S., Pals S.T., et al. Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood. 2013;122:2412–2424. doi: 10.1182/blood-2013-02-482125. PubMed DOI PMC
Ma J., Lu P., Guo A., Cheng S., Zong H., Martin P., Coleman M., Wang Y.L. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells. Br. J. Haematol. 2014;166:849–861. doi: 10.1111/bjh.12974. PubMed DOI
Hershkovitz-Rokah O., Pulver D., Lenz G., Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: Clinical, molecular and treatment aspects. Br. J. Haematol. 2018;181:306–319. doi: 10.1111/bjh.15108. PubMed DOI
Zhao X., Lwin T., Silva A., Shah B., Tao J., Fang B., Zhang L., Fu K., Bi C., Li J., et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat. Commun. 2017;8:14920. doi: 10.1038/ncomms14920. PubMed DOI PMC
Chiron D., Di Liberto M., Martin P., Huang X., Sharman J., Blecua P., Mathew S., Vijay P., Eng K., Ali S., et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov. 2014;4:1022–1035. doi: 10.1158/2159-8290.CD-14-0098. PubMed DOI PMC
Wu C., de Miranda N.F., Chen L., Wasik A.M., Mansouri L., Jurczak W., Galazka K., Dlugosz-Danecka M., Machaczka M., Zhang H., et al. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: Impact of recurrent CARD11 mutations. Oncotarget. 2016;7:38180–38190. doi: 10.18632/oncotarget.9500. PubMed DOI PMC
Ming M., Wu W., Xie B., Sukhanova M., Wang W., Kadri S., Sharma S., Lee J., Shacham S., Landesman Y., et al. XPO1 Inhibitor Selinexor Overcomes Intrinsic Ibrutinib Resistance in Mantle Cell Lymphoma via Nuclear Retention of IkappaB. Mol. Cancer Ther. 2018;17:2564–2574. doi: 10.1158/1535-7163.MCT-17-0789-ATR. PubMed DOI
Kapoor I., Li Y., Sharma A., Zhu H., Bodo J., Xu W., Hsi E.D., Hill B.T., Almasan A. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis. 2019;10:924. doi: 10.1038/s41419-019-2158-0. PubMed DOI PMC
Tam C.S., Anderson M.A., Pott C., Agarwal R., Handunnetti S., Hicks R.J., Burbury K., Turner G., Di Iulio J., Bressel M., et al. Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma. N. Engl. J. Med. 2018;378:1211–1223. doi: 10.1056/NEJMoa1715519. PubMed DOI
Jain P., Kanagal-Shamanna R., Zhang S., Ahmed M., Ghorab A., Zhang L., Ok C.Y., Li S., Hagemeister F., Zeng D., et al. Long-term outcomes and mutation profiling of patients with mantle cell lymphoma (MCL) who discontinued ibrutinib. Br. J. Haematol. 2018;183:578–587. doi: 10.1111/bjh.15567. PubMed DOI
Gustine J.N., Xu L., Tsakmaklis N., Demos M.G., Kofides A., Chen J.G., Liu X., Munshi M., Guerrera M.L., Chan G.G., et al. CXCR4 (S338X) clonality is an important determinant of ibrutinib outcomes in patients with Waldenstrom macroglobulinemia. Blood Adv. 2019;3:2800–2803. doi: 10.1182/bloodadvances.2019000635. PubMed DOI PMC
Cao Y., Hunter Z.R., Liu X., Xu L., Yang G., Chen J., Patterson C.J., Tsakmaklis N., Kanan S., Rodig S., et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia. 2015;29:169–176. doi: 10.1038/leu.2014.187. PubMed DOI
Isoyama S., Kajiwara G., Tamaki N., Okamura M., Yoshimi H., Nakamura N., Kawamura K., Nishimura Y., Namatame N., Yamori T., et al. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474. Cancer Sci. 2015;106:171–178. doi: 10.1111/cas.12582. PubMed DOI PMC
Scheffold A., Jebaraj B.M.C., Tausch E., Bloehdorn J., Ghia P., Yahiaoui A., Dolnik A., Blatte T.J., Bullinger L., Dheenadayalan R.P., et al. IGF1R as druggable target mediating PI3K-delta inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood. 2019;134:534–547. doi: 10.1182/blood.2018881029. PubMed DOI PMC
Kim J.H., Kim W.S., Park C. Interleukin-6 mediates resistance to PI3K-pathway-targeted therapy in lymphoma. BMC Cancer. 2019;19:936. doi: 10.1186/s12885-019-6057-7. PubMed DOI PMC
Furman R.R., Sharman J.P., Coutre S.E., Cheson B.D., Pagel J.M., Hillmen P., Barrientos J.C., Zelenetz A.D., Kipps T.J., Flinn I., et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2014;370:997–1007. doi: 10.1056/NEJMoa1315226. PubMed DOI PMC
Zelenetz A.D., Barrientos J.C., Brown J.R., Coiffier B., Delgado J., Egyed M., Ghia P., Illes A., Jurczak W., Marlton P., et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: Interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. Oncol. 2017;18:297–311. doi: 10.1016/S1470-2045(16)30671-4. PubMed DOI PMC
Deeks E.D. Venetoclax: First Global Approval. Drugs. 2016;76:979–987. doi: 10.1007/s40265-016-0596-x. PubMed DOI
Merino D., Kelly G.L., Lessene G., Wei A.H., Roberts A.W., Strasser A. BH3-Mimetic Drugs: Blazing the Trail for New Cancer Medicines. Cancer Cell. 2018;34:879–891. doi: 10.1016/j.ccell.2018.11.004. PubMed DOI
Davids M.S., Roberts A.W., Seymour J.F., Pagel J.M., Kahl B.S., Wierda W.G., Puvvada S., Kipps T.J., Anderson M.A., Salem A.H., et al. Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017;35:826–833. doi: 10.1200/JCO.2016.70.4320. PubMed DOI PMC
Dengler M.A., Teh C.E., Thijssen R., Gangoda L., Lan P., Herold M.J., Gray D.H., Kelly G.L., Roberts A.W., Adams J.M. Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene. 2019 doi: 10.1038/s41388-019-1122-x. PubMed DOI
Kotschy A., Szlavik Z., Murray J., Davidson J., Maragno A.L., Le Toumelin-Braizat G., Chanrion M., Kelly G.L., Gong J.N., Moujalled D.M., et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–482. doi: 10.1038/nature19830. PubMed DOI
Leverson J.D., Cojocari D. Hematologic Tumor Cell Resistance to the BCL-2 Inhibitor Venetoclax: A Product of Its Microenvironment? Front. Oncol. 2018;8:458. doi: 10.3389/fonc.2018.00458. PubMed DOI PMC
Tahir S.K., Smith M.L., Hessler P., Rapp L.R., Idler K.B., Park C.H., Leverson J.D., Lam L.T. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer. 2017;17:399. doi: 10.1186/s12885-017-3383-5. PubMed DOI PMC
Agarwal R., Chan Y.C., Tam C.S., Hunter T., Vassiliadis D., Teh C.E., Thijssen R., Yeh P., Wong S.Q., Ftouni S., et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat. Med. 2019;25:119–129. doi: 10.1038/s41591-018-0243-z. PubMed DOI
Birkinshaw R.W., Gong J.N., Luo C.S., Lio D., White C.A., Anderson M.A., Blombery P., Lessene G., Majewski I.J., Thijssen R., et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 2019;10:2385. doi: 10.1038/s41467-019-10363-1. PubMed DOI PMC
Guieze R., Liu V.M., Rosebrock D., Jourdain A.A., Hernandez-Sanchez M., Martinez Zurita A., Sun J., Ten Hacken E., Baranowski K., Thompson P.A., et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell. 2019;36:369–384.e13. doi: 10.1016/j.ccell.2019.08.005. PubMed DOI PMC