Preclinical Evaluation of a Novel SHIP1 Phosphatase Activator for Inhibition of PI3K Signaling in Malignant B Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
A23669
Cancer Research UK - United Kingdom
23669
Cancer Research UK - United Kingdom
29370
Cancer Research UK - United Kingdom
14045
Blood Cancer UK - United Kingdom
16003
Blood Cancer UK - United Kingdom
A15581
Cancer Research UK - United Kingdom
16004
Blood Cancer UK - United Kingdom
A18087
Cancer Research UK - United Kingdom
PubMed
31831562
PubMed Central
PMC7124891
DOI
10.1158/1078-0432.ccr-19-2202
PII: 1078-0432.CCR-19-2202
Knihovny.cz E-zdroje
- MeSH
- aktivátory enzymů farmakologie MeSH
- apoptóza účinky léků MeSH
- chronická lymfatická leukemie farmakoterapie metabolismus patologie MeSH
- difúzní velkobuněčný B-lymfom farmakoterapie metabolismus patologie MeSH
- fosfatidylinositol-3-kinasy chemie metabolismus MeSH
- fosfatidylinositol-3,4,5-trisfosfát-5-fosfatasy genetika metabolismus MeSH
- lidé MeSH
- myši inbrední NOD MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- seskviterpeny farmakologie MeSH
- signální transdukce MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktivátory enzymů MeSH
- fosfatidylinositol-3,4,5-trisfosfát-5-fosfatasy MeSH
- INPP5D protein, human MeSH Prohlížeč
- protinádorové látky MeSH
- seskviterpeny MeSH
PURPOSE: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN: In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS: Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS: Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.
Aquinox Pharmaceuticals Inc Vancouver British Columbia Canada
Faculty of Informatics and Statistics University of Economics Prague Czech Republic
Zobrazit více v PubMed
Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol. 2013;31:675–704. doi: 10.1146/annurev-immunol-032712-095946. PubMed DOI PMC
Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol. 2017;47(6):932–45. doi: 10.1002/eji.201646795. PubMed DOI
Landego I, Jayachandran N, Wullschleger S, Zhang TT, Gibson IW, Miller A, et al. Interaction of TAPP adapter proteins with phosphatidylinositol (3,4)-bisphosphate regulates B-cell activation and autoantibody production. Eur J Immunol. 2012;42(10):2760–70. doi: 10.1002/eji.201242371. PubMed DOI
Jerkeman M, Hallek M, Dreyling M, Thieblemont C, Kimby E, Staudt L. Targeting of B-cell receptor signalling in B-cell malignancies. J Intern Med. 2017;282(5):415–28. doi: 10.1111/joim.12600. PubMed DOI
Havranek O, Xu J, Kohrer S, Wang Z, Becker L, Comer JM, et al. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 2017;130(8):995–1006. doi: 10.1182/blood-2016-10-747303. PubMed DOI PMC
Petlickovski A, Laurenti L, Li XP, Marietti S, Chiusolo P, Sica S, et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005;105(12):4820–7. doi: 10.1182/blood-2004-07-2669. PubMed DOI
Linley A, Krysov S, Ponzoni M, Johnson PW, Packham G, Stevenson FK. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood. 2015;126(16):1902–10. doi: 10.1182/blood-2015-04-640805. PubMed DOI
Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupre L, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20. doi: 10.1182/blood-2015-04-640912. PubMed DOI PMC
Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G. Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood. 2003;101(3):1087–93. doi: 10.1182/blood-2002-06-1822. PubMed DOI
D'Avola A, Drennan S, Tracy I, Henderson I, Chiecchio L, Larrayoz M, et al. Surface IgM expression and function are associated with clinical behavior, genetic abnormalities, and DNA methylation in CLL. Blood. 2016;128(6):816–26. doi: 10.1182/blood-2016-03-707786. PubMed DOI
Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96. doi: 10.1182/blood-2011-01-328484. PubMed DOI PMC
Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12. doi: 10.1182/blood-2011-05-352492. PubMed DOI PMC
Pfeifer M, Grau M, Lenze D, Wenzel SS, Wolf A, Wollert-Wulf B, et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(30):12420–5. doi: 10.1073/pnas.1305656110. PubMed DOI PMC
Zirlik K, Veelken H. Idelalisib. Recent Results Cancer Res. 2018;212:243–64. doi: 10.1007/978-3-319-91439-8_12. PubMed DOI
Greenwell IB, Ip A, Cohen JB. PI3K Inhibitors: Understanding Toxicity Mechanisms and Management. Oncology (Williston Park) 2017;31(11):821–8. PubMed
de Weerdt I, Koopmans SM, Kater AP, van Gelder M. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica. 2017;102(10):1629–39. doi: 10.3324/haematol.2017.164103. PubMed DOI PMC
Erdmann T, Klener P, Lynch JT, Grau M, Vockova P, Molinsky J, et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood. 2017;130(3):310–22. doi: 10.1182/blood-2016-12-758599. PubMed DOI
Krause G, Hassenruck F, Hallek M. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des Devel Ther. 2018;12:2577–90. doi: 10.2147/DDDT.S142406. PubMed DOI PMC
Flinn IW, O'Brien S, Kahl B, Patel M, Oki Y, Foss FF, et al. Duvelisib, a novel oral dual inhibitor of PI3K-delta,gamma, is clinically active in advanced hematologic malignancies. Blood. 2018;131(8):877–87. doi: 10.1182/blood-2017-05-786566. PubMed DOI PMC
Yahiaoui A, Meadows SA, Sorensen RA, Cui ZH, Keegan KS, Brockett R, et al. PI3Kdelta inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kdelta and BTK inhibitors. PLoS One. 2017;12(2):e0171221. doi: 10.1371/journal.pone.0171221. PubMed DOI PMC
de Rooij MF, Kuil A, Kater AP, Kersten MJ, Pals ST, Spaargaren M. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood. 2015;125(14):2306–9. doi: 10.1182/blood-2014-12-619163. PubMed DOI PMC
Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, et al. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med. 1998;188(7):1333–42. doi: 10.1084/jem.188.7.1333. PubMed DOI PMC
Brauweiler A, Tamir I, Dal Porto J, Benschop RJ, Helgason CD, Humphries RK, et al. Differential regulation of B cell development, activation, and death by the src homology 2 domain-containing 5' inositol phosphatase (SHIP) J Exp Med. 2000;191(9):1545–54. doi: 10.1084/jem.191.9.1545. PubMed DOI PMC
O'Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, et al. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35(5):746–56. doi: 10.1016/j.immuni.2011.10.011. PubMed DOI PMC
Manno B, Oellerich T, Schnyder T, Corso J, Losing M, Neumann K, et al. The Dok-3/Grb2 adaptor module promotes inducible association of the lipid phosphatase SHIP with the BCR in a coreceptor-independent manner. Eur J Immunol. 2016;46(11):2520–30. doi: 10.1002/eji.201646431. PubMed DOI
Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science. 2012;336(6085):1178–81. doi: 10.1126/science.1213368. PubMed DOI PMC
Pauls SD, Ray A, Hou S, Vaughan AT, Cragg MS, Marshall AJ. FcgammaRIIB-Independent Mechanisms Controlling Membrane Localization of the Inhibitory Phosphatase SHIP in Human B Cells. J Immunol. 2016;197(5):1587–96. doi: 10.4049/jimmunol.1600105. PubMed DOI
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev. 2014;34(4):795–824. doi: 10.1002/med.21305. PubMed DOI PMC
Kennah M, Yau TY, Nodwell M, Krystal G, Andersen RJ, Ong CJ, et al. Activation of SHIP via a small molecule agonist kills multiple myeloma cells. Exp Hematol. 2009;37(11):1274–83. doi: 10.1016/j.exphem.2009.08.001. PubMed DOI
Meimetis LG, Nodwell M, Yang L, Wang XX, Wu J, Harwig C, et al. Synthesis of SHIP1-Activating Analogs of the Sponge Meroterpenoid Pelorol. European Journal of Organic Chemistry. 2012;2012(27):5195–207. doi: 10.1002/ejoc.201200631. DOI
Ong CJ, Ming-Lum A, Nodwell M, Ghanipour A, Yang L, Williams DE, et al. Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood. 2007;110(6):1942–9. doi: 10.1182/blood-2007-03-079699. PubMed DOI
Mackenzie LF, MacRury T, Harwig C, Bogucki D, Raymond J, Pettigrew JD, et al. SHIP1 MODULATORS AND METHODS RELATED THERETO. 2014 WO2014110036.
Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood. 2007;109(10):4424–31. doi: 10.1182/blood-2006-11-056648. PubMed DOI
Yeomans A, Thirdborough SM, Valle-Argos B, Linley A, Krysov S, Hidalgo MS, et al. Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood. 2016;127(4):449–57. doi: 10.1182/blood-2015-07-660969. PubMed DOI
Krysov S, Steele AJ, Coelho V, Linley A, Sanchez Hidalgo M, Carter M, et al. Stimulation of surface IgM of chronic lymphocytic leukemia cells induces an unfolded protein response dependent on BTK and SYK. Blood. 2014;124(20):3101–9. doi: 10.1182/blood-2014-04-567198. PubMed DOI PMC
Blunt MD, Koehrer S, Dobson RC, Larrayoz M, Wilmore S, Hayman A, et al. The Dual Syk/JAK Inhibitor Cerdulatinib Antagonizes B-cell Receptor and Microenvironmental Signaling in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2017;23(9):2313–24. doi: 10.1158/1078-0432.CCR-16-1662. PubMed DOI PMC
Yang L, Williams DE, Mui A, Ong C, Krystal G, van Soest R, et al. Synthesis of pelorol and analogues: activators of the inositol 5-phosphatase SHIP. Org Lett. 2005;7(6):1073–6. doi: 10.1021/ol047316m. PubMed DOI
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, et al. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br J Pharmacol. 2013;168(6):1519–29. doi: 10.1111/bph.12038. PubMed DOI PMC
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, et al. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 1. Effects on inflammatory cell activation and chemotaxis in vitro and pharmacokinetic characterization in vivo. Br J Pharmacol. 2013;168(6):1506–18. doi: 10.1111/bph.12039. PubMed DOI PMC
Packham G, Lemm E, Valle-Argos B, Smith L, Weston-Bell N, Stevenson F, et al. Development of pelorol analogues to activate the SHIP1 lipid phosphatase; a novel paradigm to suppress B-cell receptor signaling in human B-cell cancers. Cancer Research. 2018;78(13) doi: 10.1158/1538-7445.Am2018-1871. DOI
Packham G, Valle-Argos B, Lemm E, Smith LD, Weston-Bell NJ, Gebreselassie Y, et al. Chemical Activation of the SHIP1 Inositol Lipid Phosphatase: A Novel Therapeutic Strategy to Suppress B-Cell Receptor Signaling and CXCR4 Expression in Malignant Human B Cells. Blood. 2016;128(22):2037.
Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88. doi: 10.1182/blood-2010-02-271171. PubMed DOI PMC
Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014;24:71–81. doi: 10.1016/j.semcancer.2013.08.011. PubMed DOI
Ghia P, Chiorazzi N, Stamatopoulos K. Microenvironmental influences in chronic lymphocytic leukaemia: the role of antigen stimulation. J Intern Med. 2008;264(6):549–62. doi: 10.1111/j.1365-2796.2008.02030.x. PubMed DOI
Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM, et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep. 2013;4(3):566–77. doi: 10.1016/j.celrep.2013.07.011. PubMed DOI
Young RM, Wu T, Schmitz R, Dawood M, Xiao W, Phelan JD, et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc Natl Acad Sci U S A. 2015;112(44):13447–54. doi: 10.1073/pnas.1514944112. PubMed DOI PMC
Niemann CU, Mora-Jensen HI, Dadashian EL, Krantz F, Covey T, Chen SS, et al. Combined BTK and PI3Kdelta Inhibition with Acalabrutinib and ACP-319 Improves Survival and Tumor Control in CLL Mouse Model. Clin Cancer Res. 2017;23(19):5814–23. doi: 10.1158/1078-0432.CCR-17-0650. PubMed DOI PMC
Gabelloni ML, Borge M, Galletti J, Canones C, Fernandez Calotti P, Bezares RF, et al. SHIP-1 protein level and phosphorylation status differs between CLL cells segregated by ZAP-70 expression. Br J Haematol. 2008;140(1):117–9. doi: 10.1111/j.1365-2141.2007.06891.x. PubMed DOI
Cui B, Chen L, Zhang S, Mraz M, Fecteau JF, Yu J, et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014;124(4):546–54. doi: 10.1182/blood-2014-03-559690. PubMed DOI PMC
Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6. doi: 10.1038/nm.3884. PubMed DOI PMC
Drug Resistance in Non-Hodgkin Lymphomas