• Je něco špatně v tomto záznamu ?

Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

LJ. Marcos-Zambrano, K. Karaduzovic-Hadziabdic, T. Loncar Turukalo, P. Przymus, V. Trajkovik, O. Aasmets, M. Berland, A. Gruca, J. Hasic, K. Hron, T. Klammsteiner, M. Kolev, L. Lahti, MB. Lopes, V. Moreno, I. Naskinova, E. Org, I. Paciência, G....

. 2021 ; 12 (-) : 634511. [pub] 20210219

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc21010432

The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.

Bioinformatics Research Unit Riga Stradins University Riga Latvia

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Instituto de Salud Carlos 3 Madrid Spain

Centro de Matemática e Aplicações FCT UNL Caparica Portugal

Colorectal Cancer Group Institut de Recerca Biomedica de Bellvitge Barcelona Spain

Computational Biology Group Precision Nutrition and Cancer Research Program IMDEA Food Institute Madrid Spain

Consortium for Biomedical Research in Epidemiology and Public Health Barcelona Spain

Department of Biotechnology Institute of Molecular and Cell Biology University of Tartu Tartu Estonia

Department of Clinical Science University of Bergen Bergen Norway

Department of Clinical Sciences Faculty of Medicine University of Barcelona Barcelona Spain

Department of Computer Networks and Systems Silesian University of Technology Gliwice Poland

Department of Computer Science University of Crete Heraklion Greece

Department of Computing University of Turku Turku Finland

Department of Information Systems Zefat Academic College Zefat Israel

Department of Mathematical Analysis and Applications of Mathematics Palacký University Olomouc Czechia

Department of Microbiology University of Innsbruck Innsbruck Austria

EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal

Faculty of Computer Science and Engineering Ss Cyril and Methodius University Skopje North Macedonia

Faculty of Engineering and Natural Sciences International University of Sarajevo Sarajevo Bosnia and Herzegovina

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Toruń Poland

Faculty of Technical Sciences University of Novi Sad Novi Sad Serbia

Galilee Digital Health Research Center Zefat Academic College Zefat Israel

Group for Microbiology and Microbial Biotechnology Department of Animal Science University of Ljubljana Ljubljana Slovenia

Institute of Genomics Estonian Genome Centre University of Tartu Tartu Estonia

Institute of Molecular and Cell Biology University of Tartu Tartu Estonia

NOVA Laboratory for Computer Science and Informatics FCT UNL Caparica Portugal

Oncology Data Analytics Program Catalan Institute of Oncology Barcelona Spain

School of Microbiology and APC Microbiome Ireland University College Cork Cork Ireland

South West University Neofit Rilski Blagoevgrad Bulgaria

Unidad de Gestión Clínica de Endocrinología y Nutrición Instituto de Investigación Biomédica de Málaga Hospital Clínico Universitario Virgen de la Victoria Universidad de Málaga Málaga Spain

Université Paris Saclay INRAE MGP Jouy en Josas France

University Sarajevo School of Science and Technology Sarajevo Bosnia and Herzegovina

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21010432
003      
CZ-PrNML
005      
20210715112835.0
007      
ta
008      
210413s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fmicb.2021.634511 $2 doi
035    __
$a (PubMed)33737920
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Marcos-Zambrano, Laura Judith $u Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
245    10
$a Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment / $c LJ. Marcos-Zambrano, K. Karaduzovic-Hadziabdic, T. Loncar Turukalo, P. Przymus, V. Trajkovik, O. Aasmets, M. Berland, A. Gruca, J. Hasic, K. Hron, T. Klammsteiner, M. Kolev, L. Lahti, MB. Lopes, V. Moreno, I. Naskinova, E. Org, I. Paciência, G. Papoutsoglou, R. Shigdel, B. Stres, B. Vilne, M. Yousef, E. Zdravevski, I. Tsamardinos, E. Carrillo de Santa Pau, MJ. Claesson, I. Moreno-Indias, J. Truu
520    9_
$a The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Karaduzovic-Hadziabdic, Kanita $u Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
700    1_
$a Loncar Turukalo, Tatjana $u Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
700    1_
$a Przymus, Piotr $u Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
700    1_
$a Trajkovik, Vladimir $u Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, North Macedonia
700    1_
$a Aasmets, Oliver $u Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia ; Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
700    1_
$a Berland, Magali $u Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
700    1_
$a Gruca, Aleksandra $u Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
700    1_
$a Hasic, Jasminka $u University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
700    1_
$a Hron, Karel $u Department of Mathematical Analysis and Applications of Mathematics, Palacký University, Olomouc, Czechia
700    1_
$a Klammsteiner, Thomas $u Department of Microbiology, University of Innsbruck, Innsbruck, Austria
700    1_
$a Kolev, Mikhail $u South West University "Neofit Rilski", Blagoevgrad, Bulgaria
700    1_
$a Lahti, Leo $u Department of Computing, University of Turku, Turku, Finland
700    1_
$a Lopes, Marta B $u NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), FCT, UNL, Caparica, Portugal $u Centro de Matemática e Aplicações (CMA), FCT, UNL, Caparica, Portugal
700    1_
$a Moreno, Victor $u Oncology Data Analytics Program, Catalan Institute of Oncology (ICO) Barcelona, Spain $u Colorectal Cancer Group, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Barcelona, Spain $u Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain $u Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
700    1_
$a Naskinova, Irina $u South West University "Neofit Rilski", Blagoevgrad, Bulgaria
700    1_
$a Org, Elin $u Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
700    1_
$a Paciência, Inês $u EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
700    1_
$a Papoutsoglou, Georgios $u Department of Computer Science, University of Crete, Heraklion, Greece
700    1_
$a Shigdel, Rajesh $u Department of Clinical Science, University of Bergen, Bergen, Norway
700    1_
$a Stres, Blaz $u Group for Microbiology and Microbial Biotechnology, Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
700    1_
$a Vilne, Baiba $u Bioinformatics Research Unit, Riga Stradins University, Riga, Latvia
700    1_
$a Yousef, Malik $u Department of Information Systems, Zefat Academic College, Zefat, Israel $u Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
700    1_
$a Zdravevski, Eftim $u Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, North Macedonia
700    1_
$a Tsamardinos, Ioannis $u Department of Computer Science, University of Crete, Heraklion, Greece
700    1_
$a Carrillo de Santa Pau, Enrique $u Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
700    1_
$a Claesson, Marcus J $u School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
700    1_
$a Moreno-Indias, Isabel $u Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain $u Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
700    1_
$a Truu, Jaak $u Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
773    0_
$w MED00181714 $t Frontiers in microbiology $x 1664-302X $g Roč. 12, č. - (2021), s. 634511
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33737920 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20210413 $b ABA008
991    __
$a 20210715112834 $b ABA008
999    __
$a ind $b bmc $g 1649806 $s 1130808
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 12 $c - $d 634511 $e 20210219 $i 1664-302X $m Frontiers in microbiology $n Front Microbiol $x MED00181714
LZP    __
$a Pubmed-20210413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...