-
Je něco špatně v tomto záznamu ?
Hydrophobic Amino Acids as Universal Elements of Protein-Induced DNA Structure Deformation
K. Faltejsková, D. Jakubec, J. Vondrášek
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
32498246
DOI
10.3390/ijms21113986
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- aminokyselinové motivy MeSH
- aminokyseliny chemie MeSH
- Arabidopsis metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA chemie MeSH
- fenylalanin chemie MeSH
- hydrofobní a hydrofilní interakce * MeSH
- konformace nukleové kyseliny MeSH
- kyselina glutamová chemie MeSH
- lidé MeSH
- proteiny chemie MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- sekundární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Interaction with the DNA minor groove is a significant contributor to specific sequence recognition in selected families of DNA-binding proteins. Based on a statistical analysis of 3D structures of protein-DNA complexes, we propose that distortion of the DNA minor groove resulting from interactions with hydrophobic amino acid residues is a universal element of protein-DNA recognition. We provide evidence to support this by associating each DNA minor groove-binding amino acid residue with the local dimensions of the DNA double helix using a novel algorithm. The widened DNA minor grooves are associated with high GC content. However, some AT-rich sequences contacted by hydrophobic amino acids (e.g., phenylalanine) display extreme values of minor groove width as well. For a number of hydrophobic amino acids, distinct secondary structure preferences could be identified for residues interacting with the widened DNA minor groove. These results hold even after discarding the most populous families of minor groove-binding proteins.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012501
- 003
- CZ-PrNML
- 005
- 20210713154439.0
- 007
- ta
- 008
- 210420s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms21113986 $2 doi
- 035 __
- $a (PubMed)32498246
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Faltejsková, Kateřina $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Prague 6, Czech Republic ; Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
- 245 10
- $a Hydrophobic Amino Acids as Universal Elements of Protein-Induced DNA Structure Deformation / $c K. Faltejsková, D. Jakubec, J. Vondrášek
- 520 9_
- $a Interaction with the DNA minor groove is a significant contributor to specific sequence recognition in selected families of DNA-binding proteins. Based on a statistical analysis of 3D structures of protein-DNA complexes, we propose that distortion of the DNA minor groove resulting from interactions with hydrophobic amino acid residues is a universal element of protein-DNA recognition. We provide evidence to support this by associating each DNA minor groove-binding amino acid residue with the local dimensions of the DNA double helix using a novel algorithm. The widened DNA minor grooves are associated with high GC content. However, some AT-rich sequences contacted by hydrophobic amino acids (e.g., phenylalanine) display extreme values of minor groove width as well. For a number of hydrophobic amino acids, distinct secondary structure preferences could be identified for residues interacting with the widened DNA minor groove. These results hold even after discarding the most populous families of minor groove-binding proteins.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a aminokyselinové motivy $7 D020816
- 650 _2
- $a aminokyseliny $x chemie $7 D000596
- 650 _2
- $a Arabidopsis $x metabolismus $7 D017360
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a DNA $x chemie $7 D004247
- 650 _2
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 _2
- $a kyselina glutamová $x chemie $7 D018698
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a fenylalanin $x chemie $7 D010649
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a proteiny $x chemie $7 D011506
- 650 _2
- $a Saccharomyces cerevisiae $x metabolismus $7 D012441
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Jakubec, David $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Prague 6, Czech Republic ; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- 700 1_
- $a Vondrášek, Jiří $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Prague 6, Czech Republic
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 21, č. 11 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32498246 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210713154436 $b ABA008
- 999 __
- $a ok $b bmc $g 1650795 $s 1132880
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 21 $c 11 $e 20200602 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a CZ.02.1.01/0.0/0.0/16_019/0000729 $p European Regional Development Fund
- LZP __
- $a Pubmed-20210420