Hydrophobic Amino Acids as Universal Elements of Protein-Induced DNA Structure Deformation
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
32498246
PubMed Central
PMC7312683
DOI
10.3390/ijms21113986
PII: ijms21113986
Knihovny.cz E-resources
- Keywords
- DNA shape, hydrophobic, indirect readout, minor groove, protein–DNA interaction, specific recognition,
- MeSH
- Algorithms MeSH
- Amino Acid Motifs MeSH
- Amino Acids chemistry MeSH
- Arabidopsis metabolism MeSH
- DNA-Binding Proteins metabolism MeSH
- DNA chemistry MeSH
- Phenylalanine chemistry MeSH
- Hydrophobic and Hydrophilic Interactions * MeSH
- Nucleic Acid Conformation MeSH
- Glutamic Acid chemistry MeSH
- Humans MeSH
- Proteins chemistry MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Protein Structure, Secondary MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids MeSH
- DNA-Binding Proteins MeSH
- DNA MeSH
- Phenylalanine MeSH
- Glutamic Acid MeSH
- Proteins MeSH
Interaction with the DNA minor groove is a significant contributor to specific sequence recognition in selected families of DNA-binding proteins. Based on a statistical analysis of 3D structures of protein-DNA complexes, we propose that distortion of the DNA minor groove resulting from interactions with hydrophobic amino acid residues is a universal element of protein-DNA recognition. We provide evidence to support this by associating each DNA minor groove-binding amino acid residue with the local dimensions of the DNA double helix using a novel algorithm. The widened DNA minor grooves are associated with high GC content. However, some AT-rich sequences contacted by hydrophobic amino acids (e.g., phenylalanine) display extreme values of minor groove width as well. For a number of hydrophobic amino acids, distinct secondary structure preferences could be identified for residues interacting with the widened DNA minor groove. These results hold even after discarding the most populous families of minor groove-binding proteins.
See more in PubMed
Slattery M., Zhou T., Yang L., Dantas Machado A.C., Gordan R., Rohs R. Absence of a Simple Code: How Transcription Factors Read the Genome. Trends Biochem. Sci. 2014;39:381–399. doi: 10.1016/j.tibs.2014.07.002. PubMed DOI PMC
Rohs R., Jin X., West S.M., Joshi R., Honig B., Mann R.S. Origins of Specificity in Protein–DNA Recognition. Annu. Rev. Biochem. 2010;79:233–269. doi: 10.1146/annurev-biochem-060408-091030. PubMed DOI PMC
Harrison S.C., Aggarwal A.K. DNA Recognition by Proteins with the Helix-Turn-Helix Motif. Annu. Rev. Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. PubMed DOI
Inukai S., Kock K.H., Bulyk M.L. Transcription Factor–DNA Binding: Beyond Binding Site Motifs. Curr. Opin. Genet. Dev. 2017;43:110–119. doi: 10.1016/j.gde.2017.02.007. PubMed DOI PMC
Zuccheri G., Scipioni A., Cavaliere V., Gargiulo G., De Santis P., Samori B. Mapping the Intrinsic Curvature and Flexibility along the DNA Chain. Proc. Natl. Acad. Sci. USA. 2001;98:3074–3079. doi: 10.1073/pnas.051631198. PubMed DOI PMC
McNamara P.T., Bolshoy A., Trifonov E.N., Harrington R.E. Sequence-Dependent Kinks Induced in Curved DNA. J. Biomol. Struct. Dyn. 1990;8:529–538. doi: 10.1080/07391102.1990.10507827. PubMed DOI
Davis N.A., Majee S.S., Kahn J.D. TATA Box DNA Deformation with and without the TATA Box-Binding Protein. J. Mol. Biol. 1999;291:249–265. doi: 10.1006/jmbi.1999.2947. PubMed DOI
Haran T.E., Mohanty U. The Unique Structure of A-tracts and Intristic DNA Bending. Q. Rev. Biophys. 2009;42:41–81. doi: 10.1017/S0033583509004752. PubMed DOI
Gavathiotis E., Sharman G.J., Searle M.S. Sequence-Dependent Variation in DNA Minor Groove Width Dictates Orientational Preference of Hoechst 33258 in A-Tract Recognition: Solution NMR Structure of the 2:1 Complex with d(CTTTTGCAAAAG)2. Nucleic Acids Res. 2000;28:728–735. doi: 10.1093/nar/28.3.728. PubMed DOI PMC
Rohs R., West S.M., Sosinsky A., Liu P., Mann R.S., Honig B. The Role of DNA Shape in Protein–DNA Recognition. Nature. 2009;461:1248–1253. doi: 10.1038/nature08473. PubMed DOI PMC
Yella V.R., Bhimsaria D., Ghoshdastidar D., Rodríguez-Martínez J.A., Ansari A.Z., Bansal M. Flexibility and Structure of Flanking DNA Impact Transcription Factor Affinity for its Core Motif. Nucleic Acids Res. 2018;46:11883–11897. doi: 10.1093/nar/gky1057. PubMed DOI PMC
Hancock S.P., Ghane T., Cascio D., Rohs R., Di Felice R., Johnson R.C. Control of DNA Minor Groove Width and Fis Protein Binding by the Purine 2-Amino Group. Nucleic Acids Res. 2013;41:6750–6760. doi: 10.1093/nar/gkt357. PubMed DOI PMC
Oguey C., Foloppe N., Hartmann B. Understanding the Sequence-Dependence of DNA Groove Dimensions: Implications for DNA Interactions. PLoS ONE. 2010;5:e15931. doi: 10.1371/journal.pone.0015931. PubMed DOI PMC
Dror I., Golan T., Levy C., Rohs R., Mandel-Gutfreund Y. A Widespread Role of the Motif Environment in Transcription Factor Binding Across Diverse Protein Families. Genome Res. 2015;25:1268–1280. doi: 10.1101/gr.184671.114. PubMed DOI PMC
von Hippel P., Berg O. On the Specificity of DNA–Protein Interactions. Proc. Natl. Acad. Sci. USA. 1986;83:1608–1612. doi: 10.1073/pnas.83.6.1608. PubMed DOI PMC
Rohs R., West S.M., Liu P., Honig B. Nuance in the Double-Helix and its Role in Protein–DNA Recognition. Curr. Opin. Struct. Biol. 2009;19:171–177. doi: 10.1016/j.sbi.2009.03.002. PubMed DOI PMC
Tolstorukov M.Y., Jernigan R.L., Zhurkin V.B. Protein–DNA Hydrophobic Recognition in the Minor Groove is Facilitated by Sugar Switching. J. Mol. Biol. 2004;337:65–76. doi: 10.1016/j.jmb.2004.01.011. PubMed DOI
Sandmann A., Sticht H. Probing the Role of Intercalating Protein Sidechains for Kink Formation in DNA. PLoS ONE. 2018;13:e0192605. doi: 10.1371/journal.pone.0192605. PubMed DOI PMC
Yang L., Orenstein Y., Jolma A., Yin Y., Taipale J., Shamir R., Rohs R. Transcription Factor Family-Specific DNA Shape Readout Revealed by Quantitative Specificity Models. Mol. Syst. Biol. 2017;13:910. doi: 10.15252/msb.20167238. PubMed DOI PMC
Dai Z., Guo D., Dai X., Xiong Y. Genome-Wide Analysis of Transcription Factor Binding Sites and Their Characteristic DNA Structures. BMC Genom. 2015;16:S8. doi: 10.1186/1471-2164-16-S3-S8. PubMed DOI PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Berman H., Henrick K., Nakamura H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003;10:980. doi: 10.1038/nsb1203-980. PubMed DOI
Burley S.K., Berman H.M., Bhikadiya C., Bi C., Chen L., Di Costanzo L., Christie C., Dalenberg K., Duarte J.M., Dutta S., et al. RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy. Nucleic Acids Res. 2019;47:464–474. doi: 10.1093/nar/gky1004. PubMed DOI PMC
Sathyapriya R., Vijayabaskar M.S., Vishveshwara S. Insights into Protein–DNA Interactions through Structure Network Analysis. PLoS Comput. Biol. 2008;4:e1000170. doi: 10.1371/journal.pcbi.1000170. PubMed DOI PMC
Garvie C.M., Wolberger C. Recognition of Specific DNA Sequences. Mol. Cell. 2001;8:937–946. doi: 10.1016/S1097-2765(01)00392-6. PubMed DOI
Shakked Z., Guerstein-Guzikevich G., Eisenstein M., Frolow F., Rabinovich D. The Conformation of the DNA Double Helix in the Crystal is Dependent on its Environment. Nature. 1989;342:456–460. doi: 10.1038/342456a0. PubMed DOI
Schrödinger, LLC; [(accessed on 1 June 2020)]. The PyMOL Molecular Graphics System, Version 1.7. Available online: https://sourceforge.net/projects/pymol/files/pymol/1.7/
Stella S., Cascio D., Johnson R.C. The Shape of the DNA Minor Groove Directs Binding by the DNA-Bending Protein Fis. Genes Dev. 2010;24:814–826. doi: 10.1101/gad.1900610. PubMed DOI PMC
Zeiske T., Baburajendran N., Kaczynska A., Brasch J., Palmer A.G., Shapiro L., Honig B., Mann R.S. Intrinsic DNA Shape Accounts for Affinity Differences between Hox-Cofactor Binding Sites. Cell Rep. 2018;24:2221–2230. doi: 10.1016/j.celrep.2018.07.100. PubMed DOI PMC
Lu X.-J., Olson W.K. 3DNA: A Software Package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003;31:5108–5121. doi: 10.1093/nar/gkg680. PubMed DOI PMC
Wang G., Dunbrack R.L. PISCES: A Protein Sequence Culling Server. Bioinformatics. 2003;19:1589–1591. doi: 10.1093/bioinformatics/btg224. PubMed DOI
Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam Protein Families Database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC
Mann H.B., Whitney D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947;18:50–60. doi: 10.1214/aoms/1177730491. DOI
El Hassan M., Calladine C. Two Distinct Modes of Protein-Induced Bending in DNA. J. Mol. Biol. 1998;282:331–343. doi: 10.1006/jmbi.1998.1994. PubMed DOI
Kabsch W., Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI