• Je něco špatně v tomto záznamu ?

Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish

M. Malý, M. Boublík, M. Pocrnić, M. Ansorge, K. Lorinčíková, J. Svobodová, V. Hruška, P. Dubský, B. Gaš

. 2020 ; 41 (7-8) : 493-501. [pub] 20191106

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012741

Grantová podpora
Czech Science Foundation - International
4135 Agilent Technologies Research Gift - International
CIII-RO-0010-13-1819 CEEPUS - International
18-11776S GACR - International

Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012741
003      
CZ-PrNML
005      
20210507102016.0
007      
ta
008      
210420s2020 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/elps.201900283 $2 doi
035    __
$a (PubMed)31651992
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Malý, Michal $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
245    10
$a Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish / $c M. Malý, M. Boublík, M. Pocrnić, M. Ansorge, K. Lorinčíková, J. Svobodová, V. Hruška, P. Dubský, B. Gaš
520    9_
$a Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.
650    _2
$a algoritmy $7 D000465
650    _2
$a elektrolyty $x analýza $x chemie $7 D004573
650    _2
$a elektroforéza kapilární $x metody $7 D019075
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a nelineární dynamika $7 D017711
650    _2
$a osmolární koncentrace $7 D009994
650    12
$a software $7 D012984
650    _2
$a termodynamika $7 D013816
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Boublík, Milan $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
700    1_
$a Pocrnić, Marijana $u Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
700    1_
$a Ansorge, Martin $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
700    1_
$a Lorinčíková, Kateřina $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
700    1_
$a Svobodová, Jana $u Agilent Technologies Deutschland GmbH & Co. KG, Liquid Phase Separations Division, Waldbronn, Germany
700    1_
$a Hruška, Vlastimil $u Agilent Technologies Deutschland GmbH & Co. KG, Liquid Phase Separations Division, Waldbronn, Germany
700    1_
$a Dubský, Pavel $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
700    1_
$a Gaš, Bohuslav $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
773    0_
$w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 41, č. 7-8 (2020), s. 493-501
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31651992 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507102016 $b ABA008
999    __
$a ok $b bmc $g 1650993 $s 1133120
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 41 $c 7-8 $d 493-501 $e 20191106 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
GRA    __
$p Czech Science Foundation $2 International
GRA    __
$a 4135 $p Agilent Technologies Research Gift $2 International
GRA    __
$a CIII-RO-0010-13-1819 $p CEEPUS $2 International
GRA    __
$a 18-11776S $p GACR $2 International
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...