-
Je něco špatně v tomto záznamu ?
Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish
M. Malý, M. Boublík, M. Pocrnić, M. Ansorge, K. Lorinčíková, J. Svobodová, V. Hruška, P. Dubský, B. Gaš
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Czech Science Foundation - International
4135
Agilent Technologies Research Gift - International
CIII-RO-0010-13-1819
CEEPUS - International
18-11776S
GACR - International
PubMed
31651992
DOI
10.1002/elps.201900283
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- elektroforéza kapilární metody MeSH
- elektrolyty analýza chemie MeSH
- koncentrace vodíkových iontů MeSH
- nelineární dynamika MeSH
- osmolární koncentrace MeSH
- software * MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.
Agilent Technologies Deutschland GmbH and Co KG Liquid Phase Separations Division Waldbronn Germany
Department of Chemistry Faculty of Science University of Zagreb Zagreb Croatia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012741
- 003
- CZ-PrNML
- 005
- 20210507102016.0
- 007
- ta
- 008
- 210420s2020 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/elps.201900283 $2 doi
- 035 __
- $a (PubMed)31651992
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Malý, Michal $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
- 245 10
- $a Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish / $c M. Malý, M. Boublík, M. Pocrnić, M. Ansorge, K. Lorinčíková, J. Svobodová, V. Hruška, P. Dubský, B. Gaš
- 520 9_
- $a Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a elektrolyty $x analýza $x chemie $7 D004573
- 650 _2
- $a elektroforéza kapilární $x metody $7 D019075
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a nelineární dynamika $7 D017711
- 650 _2
- $a osmolární koncentrace $7 D009994
- 650 12
- $a software $7 D012984
- 650 _2
- $a termodynamika $7 D013816
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Boublík, Milan $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Pocrnić, Marijana $u Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
- 700 1_
- $a Ansorge, Martin $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Lorinčíková, Kateřina $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Svobodová, Jana $u Agilent Technologies Deutschland GmbH & Co. KG, Liquid Phase Separations Division, Waldbronn, Germany
- 700 1_
- $a Hruška, Vlastimil $u Agilent Technologies Deutschland GmbH & Co. KG, Liquid Phase Separations Division, Waldbronn, Germany
- 700 1_
- $a Dubský, Pavel $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
- 700 1_
- $a Gaš, Bohuslav $u Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
- 773 0_
- $w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 41, č. 7-8 (2020), s. 493-501
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31651992 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507102016 $b ABA008
- 999 __
- $a ok $b bmc $g 1650993 $s 1133120
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 41 $c 7-8 $d 493-501 $e 20191106 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
- GRA __
- $p Czech Science Foundation $2 International
- GRA __
- $a 4135 $p Agilent Technologies Research Gift $2 International
- GRA __
- $a CIII-RO-0010-13-1819 $p CEEPUS $2 International
- GRA __
- $a 18-11776S $p GACR $2 International
- LZP __
- $a Pubmed-20210420