-
Je něco špatně v tomto záznamu ?
Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae
P. Van Nguyen, V. Plocek, L. Váchová, Z. Palková
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Nature Open Access
od 2015-12-01
PubMed Central
od 2015
Europe PubMed Central
od 2015
ProQuest Central
od 2015-03-01
Open Access Digital Library
od 2015-03-25
Open Access Digital Library
od 2015-01-01
Health & Medicine (ProQuest)
od 2015-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2014
Springer Nature OA/Free Journals
od 2015-12-01
- MeSH
- bakteriální adheze MeSH
- biofilmy růst a vývoj MeSH
- glukosa metabolismus MeSH
- jaderné proteiny genetika metabolismus MeSH
- kultivační média chemie MeSH
- mutace MeSH
- povrchové vlastnosti MeSH
- regulace genové exprese u hub MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Saccharomyces cerevisiae is a mainly beneficial yeast, widely used in the food industry. However, there is growing evidence of its potential pathogenicity, leading to fungemia and invasive infections. The medical impact of yeast pathogens depends on formation of biofilms: multicellular structures, protected from the environment. Cell adhesion is a prerequisite of biofilm formation. We investigated the adherence of wild and genetically modified S. cerevisiae strains, formation of solid-liquid interface biofilms and associated regulation. Planktonic and static cells of wild strain BRF adhered and formed biofilms in glucose-free medium. Tup1p and Cyc8p were key positive and negative regulators, respectively. Glucose caused increased Cyc8p levels and blocked cell adhesion. Even low glucose levels, comparable with levels in the blood, allowed biofilm dispersal and release of planktonic cells. Cyc8p could thus modulate cell adhesion in different niches, dependently on environmental glucose level, e.g., high-glucose blood versus low-glucose tissues in host organisms.
Faculty of Science Charles University BIOCEV Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012863
- 003
- CZ-PrNML
- 005
- 20210507104000.0
- 007
- ta
- 008
- 210420s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41522-020-0118-1 $2 doi
- 035 __
- $a (PubMed)32054862
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Van Nguyen, Phu $u Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- 245 10
- $a Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae / $c P. Van Nguyen, V. Plocek, L. Váchová, Z. Palková
- 520 9_
- $a Saccharomyces cerevisiae is a mainly beneficial yeast, widely used in the food industry. However, there is growing evidence of its potential pathogenicity, leading to fungemia and invasive infections. The medical impact of yeast pathogens depends on formation of biofilms: multicellular structures, protected from the environment. Cell adhesion is a prerequisite of biofilm formation. We investigated the adherence of wild and genetically modified S. cerevisiae strains, formation of solid-liquid interface biofilms and associated regulation. Planktonic and static cells of wild strain BRF adhered and formed biofilms in glucose-free medium. Tup1p and Cyc8p were key positive and negative regulators, respectively. Glucose caused increased Cyc8p levels and blocked cell adhesion. Even low glucose levels, comparable with levels in the blood, allowed biofilm dispersal and release of planktonic cells. Cyc8p could thus modulate cell adhesion in different niches, dependently on environmental glucose level, e.g., high-glucose blood versus low-glucose tissues in host organisms.
- 650 _2
- $a bakteriální adheze $7 D001422
- 650 _2
- $a biofilmy $x růst a vývoj $7 D018441
- 650 _2
- $a kultivační média $x chemie $7 D003470
- 650 _2
- $a regulace genové exprese u hub $7 D015966
- 650 _2
- $a glukosa $x metabolismus $7 D005947
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a jaderné proteiny $x genetika $x metabolismus $7 D009687
- 650 _2
- $a represorové proteiny $x genetika $x metabolismus $7 D012097
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x fyziologie $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Plocek, Vítězslav $u Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- 700 1_
- $a Váchová, Libuše $u Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
- 700 1_
- $a Palková, Zdena $u Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic. zdenap@natur.cuni.cz
- 773 0_
- $w MED00197303 $t NPJ biofilms and microbiomes $x 2055-5008 $g Roč. 6, č. 1 (2020), s. 7
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32054862 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507103959 $b ABA008
- 999 __
- $a ok $b bmc $g 1651106 $s 1133242
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 6 $c 1 $d 7 $e 20200213 $i 2055-5008 $m NPJ biofilms and microbiomes $n NPJ Biofilms Microbiomes $x MED00197303
- LZP __
- $a Pubmed-20210420