• Je něco špatně v tomto záznamu ?

On tower and checkerboard neural network architectures for gene expression inference

V. Kunc, J. Kléma

. 2020 ; 21 (Suppl 5) : 454. [pub] 20201216

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019635

BACKGROUND: One possible approach how to economically facilitate gene expression profiling is to use the L1000 platform which measures the expression of ∼1,000 landmark genes and uses a computational method to infer the expression of another ∼10,000 genes. One such method for the gene expression inference is a D-GEX which employs neural networks. RESULTS: We propose two novel D-GEX architectures that significantly improve the quality of the inference by increasing the capacity of a network without any increase in the number of trained parameters. The architectures partition the network into individual towers. Our best proposed architecture - a checkerboard architecture with a skip connection and five towers - together with minor changes in the training protocol improves the average mean absolute error of the inference from 0.134 to 0.128. CONCLUSIONS: Our proposed approach increases the gene expression inference accuracy without increasing the number of weights of the model and thus without increasing the memory footprint of the model that is limiting its usage.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019635
003      
CZ-PrNML
005      
20240805142853.0
007      
ta
008      
210728s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-020-06821-6 $2 doi
035    __
$a (PubMed)33327945
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kunc, Vladimír, $u Department of Computer Science, Karlovo náměstí 13, Prague, 121 35, Czech Republic. kuncvlad@fel.cvut.cz $d 1992- $7 xx0321042
245    10
$a On tower and checkerboard neural network architectures for gene expression inference / $c V. Kunc, J. Kléma
520    9_
$a BACKGROUND: One possible approach how to economically facilitate gene expression profiling is to use the L1000 platform which measures the expression of ∼1,000 landmark genes and uses a computational method to infer the expression of another ∼10,000 genes. One such method for the gene expression inference is a D-GEX which employs neural networks. RESULTS: We propose two novel D-GEX architectures that significantly improve the quality of the inference by increasing the capacity of a network without any increase in the number of trained parameters. The architectures partition the network into individual towers. Our best proposed architecture - a checkerboard architecture with a skip connection and five towers - together with minor changes in the training protocol improves the average mean absolute error of the inference from 0.134 to 0.128. CONCLUSIONS: Our proposed approach increases the gene expression inference accuracy without increasing the number of weights of the model and thus without increasing the memory footprint of the model that is limiting its usage.
650    _2
$a algoritmy $7 D000465
650    _2
$a exprese genu $7 D015870
650    12
$a stanovení celkové genové exprese $7 D020869
650    _2
$a genové regulační sítě $7 D053263
650    12
$a neuronové sítě (počítačové) $7 D016571
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kléma, Jiří $u Department of Computer Science, Karlovo náměstí 13, Prague, 121 35, Czech Republic
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 21, Suppl 5 (2020), s. 454
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33327945 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20240805142851 $b ABA008
999    __
$a ok $b bmc $g 1690451 $s 1140081
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 21 $c Suppl 5 $d 454 $e 20201216 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...