• Je něco špatně v tomto záznamu ?

Detection of abnormality in wireless capsule endoscopy images using fractal features

S. Jain, A. Seal, A. Ojha, O. Krejcar, J. Bureš, I. Tachecí, A. Yazidi

. 2020 ; 127 (-) : 104094. [pub] 20201027

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019708

One of the most recent non-invasive technologies to examine the gastrointestinal tract is wireless capsule endoscopy (WCE). As there are thousands of endoscopic images in an 8-15 h long video, an evaluator has to pay constant attention for a relatively long time (60-120 min). Therefore the possibility of the presence of pathological findings in a few images (displayed for evaluation for a few seconds only) brings a significant risk of missing the pathology with all negative consequences for the patient. Hence, manually reviewing a video to identify abnormal images is not only a tedious and time consuming task that overwhelms human attention but also is error prone. In this paper, a method is proposed for the automatic detection of abnormal WCE images. The differential box counting method is used for the extraction of fractal dimension (FD) of WCE images and the random forest based ensemble classifier is used for the identification of abnormal frames. The FD is a well-known technique for extraction of features related to texture, smoothness, and roughness. In this paper, FDs are extracted from pixel-blocks of WCE images and are fed to the classifier for identification of images with abnormalities. To determine a suitable pixel block size for FD feature extraction, various sizes of blocks are considered and are fed into six frequently used classifiers separately, and the block size of 7×7 giving the best performance is empirically determined. Further, the selection of the random forest ensemble classifier is also done using the same empirical study. Performance of the proposed method is evaluated on two datasets containing WCE frames. Results demonstrate that the proposed method outperforms some of the state-of-the-art methods with AUC of 85% and 99% on Dataset-I and Dataset-II respectively.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019708
003      
CZ-PrNML
005      
20210830101306.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2020.104094 $2 doi
035    __
$a (PubMed)33152668
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Jain, Samir $u PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, 482005, India
245    10
$a Detection of abnormality in wireless capsule endoscopy images using fractal features / $c S. Jain, A. Seal, A. Ojha, O. Krejcar, J. Bureš, I. Tachecí, A. Yazidi
520    9_
$a One of the most recent non-invasive technologies to examine the gastrointestinal tract is wireless capsule endoscopy (WCE). As there are thousands of endoscopic images in an 8-15 h long video, an evaluator has to pay constant attention for a relatively long time (60-120 min). Therefore the possibility of the presence of pathological findings in a few images (displayed for evaluation for a few seconds only) brings a significant risk of missing the pathology with all negative consequences for the patient. Hence, manually reviewing a video to identify abnormal images is not only a tedious and time consuming task that overwhelms human attention but also is error prone. In this paper, a method is proposed for the automatic detection of abnormal WCE images. The differential box counting method is used for the extraction of fractal dimension (FD) of WCE images and the random forest based ensemble classifier is used for the identification of abnormal frames. The FD is a well-known technique for extraction of features related to texture, smoothness, and roughness. In this paper, FDs are extracted from pixel-blocks of WCE images and are fed to the classifier for identification of images with abnormalities. To determine a suitable pixel block size for FD feature extraction, various sizes of blocks are considered and are fed into six frequently used classifiers separately, and the block size of 7×7 giving the best performance is empirically determined. Further, the selection of the random forest ensemble classifier is also done using the same empirical study. Performance of the proposed method is evaluated on two datasets containing WCE frames. Results demonstrate that the proposed method outperforms some of the state-of-the-art methods with AUC of 85% and 99% on Dataset-I and Dataset-II respectively.
650    12
$a kapslová endoskopie $7 D053704
650    _2
$a fraktály $7 D017709
650    _2
$a gastrointestinální trakt $7 D041981
650    _2
$a lidé $7 D006801
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Seal, Ayan $u PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, 482005, India; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka, 1249, Hradec Kralove, 50003, Czech Republic. Electronic address: ayan@iiitdmj.ac.in
700    1_
$a Ojha, Aparajita $u PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, 482005, India
700    1_
$a Krejcar, Ondrej $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka, 1249, Hradec Kralove, 50003, Czech Republic; Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
700    1_
$a Bureš, Jan $u Second Department of Internal Medicine-Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
700    1_
$a Tachecí, Ilja $u Second Department of Internal Medicine-Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
700    1_
$a Yazidi, Anis $u Artificial Intelligence Lab, Oslo Metropolitan University, 460167, Norway
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 127, č. - (2020), s. 104094
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33152668 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101306 $b ABA008
999    __
$a ok $b bmc $g 1690506 $s 1140154
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 127 $c - $d 104094 $e 20201027 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...