Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Comparison of Automated Acoustic Methods for Oral Diadochokinesis Assessment in Amyotrophic Lateral Sclerosis

M. Novotny, J. Melechovsky, K. Rozenstoks, T. Tykalova, P. Kryze, M. Kanok, J. Klempir, J. Rusz

. 2020 ; 63 (10) : 3453-3460. [pub] 20200921

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Purpose The purpose of this research note is to provide a performance comparison of available algorithms for the automated evaluation of oral diadochokinesis using speech samples from patients with amyotrophic lateral sclerosis (ALS). Method Four different algorithms based on a wide range of signal processing approaches were tested on a sequential motion rate /pa/-/ta/-/ka/ syllable repetition paradigm collected from 18 patients with ALS and 18 age- and gender-matched healthy controls (HCs). Results The best temporal detection of syllable position for a 10-ms tolerance value was achieved for ALS patients using a traditional signal processing approach based on a combination of filtering in the spectrogram, Bayesian detection, and polynomial thresholding with an accuracy rate of 74.4%, and for HCs using a deep learning approach with an accuracy rate of 87.6%. Compared to HCs, a slow diadochokinetic rate (p < .001) and diadochokinetic irregularity (p < .01) were detected in ALS patients. Conclusions The approaches using deep learning or multiple-step combinations of advanced signal processing methods provided a more robust solution to the estimation of oral DDK variables than did simpler approaches based on the rough segmentation of the signal envelope. The automated acoustic assessment of oral diadochokinesis shows excellent potential for monitoring bulbar disease progression in individuals with ALS.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019974
003      
CZ-PrNML
005      
20210830101554.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1044/2020_JSLHR-20-00109 $2 doi
035    __
$a (PubMed)32955982
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Novotny, Michal $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
245    10
$a Comparison of Automated Acoustic Methods for Oral Diadochokinesis Assessment in Amyotrophic Lateral Sclerosis / $c M. Novotny, J. Melechovsky, K. Rozenstoks, T. Tykalova, P. Kryze, M. Kanok, J. Klempir, J. Rusz
520    9_
$a Purpose The purpose of this research note is to provide a performance comparison of available algorithms for the automated evaluation of oral diadochokinesis using speech samples from patients with amyotrophic lateral sclerosis (ALS). Method Four different algorithms based on a wide range of signal processing approaches were tested on a sequential motion rate /pa/-/ta/-/ka/ syllable repetition paradigm collected from 18 patients with ALS and 18 age- and gender-matched healthy controls (HCs). Results The best temporal detection of syllable position for a 10-ms tolerance value was achieved for ALS patients using a traditional signal processing approach based on a combination of filtering in the spectrogram, Bayesian detection, and polynomial thresholding with an accuracy rate of 74.4%, and for HCs using a deep learning approach with an accuracy rate of 87.6%. Compared to HCs, a slow diadochokinetic rate (p < .001) and diadochokinetic irregularity (p < .01) were detected in ALS patients. Conclusions The approaches using deep learning or multiple-step combinations of advanced signal processing methods provided a more robust solution to the estimation of oral DDK variables than did simpler approaches based on the rough segmentation of the signal envelope. The automated acoustic assessment of oral diadochokinesis shows excellent potential for monitoring bulbar disease progression in individuals with ALS.
650    _2
$a akustika $7 D000162
650    _2
$a algoritmy $7 D000465
650    12
$a amyotrofická laterální skleróza $7 D000690
650    _2
$a Bayesova věta $7 D001499
650    _2
$a lidé $7 D006801
650    _2
$a řeč $7 D013060
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Melechovsky, Jan $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
700    1_
$a Rozenstoks, Kriss $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
700    1_
$a Tykalova, Tereza $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
700    1_
$a Kryze, Petr $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
700    1_
$a Kanok, Martin $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
700    1_
$a Klempir, Jiri $u Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Rusz, Jan $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic $u Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
773    0_
$w MED00005429 $t Journal of speech, language, and hearing research : JSLHR $x 1558-9102 $g Roč. 63, č. 10 (2020), s. 3453-3460
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32955982 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101554 $b ABA008
999    __
$a ok $b bmc $g 1690711 $s 1140420
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 63 $c 10 $d 3453-3460 $e 20200921 $i 1558-9102 $m Journal of speech, language, and hearing research $n J Speech Lang Hear Res $x MED00005429
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...