-
Je něco špatně v tomto záznamu ?
Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria
R. Obořilová, H. Šimečková, M. Pastucha, Š. Klimovič, I. Víšová, J. Přibyl, H. Vaisocherová-Lísalová, R. Pantůček, P. Skládal, I. Mašlaňová, Z. Farka
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
PubMed
34477758
DOI
10.1039/d1nr02921e
Knihovny.cz E-zdroje
- MeSH
- bakteriofágy * MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- povrchová plasmonová rezonance MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025098
- 003
- CZ-PrNML
- 005
- 20211026134126.0
- 007
- ta
- 008
- 211013s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1039/d1nr02921e $2 doi
- 035 __
- $a (PubMed)34477758
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Obořilová, Radka $u Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. farka@mail.muni.cz
- 245 10
- $a Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria / $c R. Obořilová, H. Šimečková, M. Pastucha, Š. Klimovič, I. Víšová, J. Přibyl, H. Vaisocherová-Lísalová, R. Pantůček, P. Skládal, I. Mašlaňová, Z. Farka
- 520 9_
- $a The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a bakteriofágy $7 D001435
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mikroskopie atomárních sil $7 D018625
- 650 12
- $a stafylokokové infekce $7 D013203
- 650 _2
- $a Staphylococcus aureus $7 D013211
- 650 _2
- $a povrchová plasmonová rezonance $7 D020349
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Šimečková, Hana
- 700 1_
- $a Pastucha, Matěj
- 700 1_
- $a Klimovič, Šimon
- 700 1_
- $a Víšová, Ivana
- 700 1_
- $a Přibyl, Jan
- 700 1_
- $a Vaisocherová-Lísalová, Hana
- 700 1_
- $a Pantůček, Roman
- 700 1_
- $a Skládal, Petr
- 700 1_
- $a Mašlaňová, Ivana
- 700 1_
- $a Farka, Zdeněk
- 773 0_
- $w MED00183005 $t Nanoscale $x 2040-3372 $g Roč. 13, č. 31 (2021), s. 13538-13549
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34477758 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026134132 $b ABA008
- 999 __
- $a ok $b bmc $g 1714240 $s 1145605
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 13 $c 31 $d 13538-13549 $e 20210802 $i 2040-3372 $m Nanoscale $n Nanoscale $x MED00183005
- LZP __
- $a Pubmed-20211013