• Je něco špatně v tomto záznamu ?

Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance

M. Fojtů, J. Balvan, T. Vičar, HH. Polanská, B. Peltanová, S. Matějková, M. Raudenská, J. Šturala, P. Mayorga-Burrezo, M. Masařík, M. Pumera

. 2021 ; 13 (27) : 31355-31370. [pub] 20210704

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025353

The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 μg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025353
003      
CZ-PrNML
005      
20211108131446.0
007      
ta
008      
211013s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acsami.0c20458 $2 doi
035    __
$a (PubMed)34218662
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Fojtů, Michaela $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 16628, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
245    10
$a Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance / $c M. Fojtů, J. Balvan, T. Vičar, HH. Polanská, B. Peltanová, S. Matějková, M. Raudenská, J. Šturala, P. Mayorga-Burrezo, M. Masařík, M. Pumera
520    9_
$a The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 μg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.
650    _2
$a zvířata $7 D000818
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a proliferace buněk $x účinky léků $7 D049109
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a doxorubicin $x farmakologie $x terapeutické užití $7 D004317
650    _2
$a chemorezistence $x účinky léků $7 D019008
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a testování materiálů $7 D008422
650    _2
$a myši $7 D051379
650    _2
$a nanostruktury $x chemie $7 D049329
650    _2
$a nádory vaječníků $x farmakoterapie $7 D010051
650    _2
$a siloxany $x chemie $x farmakologie $7 D012833
655    _2
$a časopisecké články $7 D016428
700    1_
$a Balvan, Jan $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
700    1_
$a Vičar, Tomáš $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
700    1_
$a Polanská, Hana Holcová $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
700    1_
$a Peltanová, Barbora $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
700    1_
$a Matějková, Stanislava $u Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nam. 2, Prague 166 10 6, Czech Republic
700    1_
$a Raudenská, Martina $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
700    1_
$a Šturala, Jiří $u Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 16628, Czech Republic
700    1_
$a Mayorga-Burrezo, Paula $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61600, Czech Republic
700    1_
$a Masařík, Michal $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 16628, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $u BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
700    1_
$a Pumera, Martin, $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 16628, Czech Republic $u Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61600, Czech Republic $u Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic $u Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoaemun-gu, Seoul 03722, South Korea $u Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan $d 1974- $7 uk2015866290
773    0_
$w MED00179503 $t ACS applied materials & interfaces $x 1944-8252 $g Roč. 13, č. 27 (2021), s. 31355-31370
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34218662 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211108131445 $b ABA008
999    __
$a ok $b bmc $g 1714411 $s 1145860
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 13 $c 27 $d 31355-31370 $e 20210704 $i 1944-8252 $m ACS applied materials & interfaces $n ACS Appl Mater Interfaces $x MED00179503
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...