-
Je něco špatně v tomto záznamu ?
Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging
A. Kolokithas-Ntoukas, A. Bakandritsos, J. Belza, P. Kesa, V. Herynek, J. Pankrac, A. Angelopoulou, O. Malina, K. Avgoustakis, V. Georgakilas, K. Polakova, R. Zboril
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
33942606
DOI
10.1021/acsami.1c00908
Knihovny.cz E-zdroje
- MeSH
- buňky A549 MeSH
- fotochemické procesy MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- magnetické nanočástice chemie toxicita MeSH
- multimodální zobrazování metody MeSH
- myši MeSH
- optoakustické techniky metody MeSH
- teranostická nanomedicína metody MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.
Department of Materials Science University of Patras 26504 Rio Greece
Department of Pharmacy University of Patras 26504 Rio Greece
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025511
- 003
- CZ-PrNML
- 005
- 20211026133738.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acsami.1c00908 $2 doi
- 035 __
- $a (PubMed)33942606
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kolokithas-Ntoukas, Argiris $u Department of Materials Science, University of Patras, 26504 Rio, Greece $u Department of Pharmacy, University of Patras, 26504 Rio, Greece
- 245 10
- $a Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging / $c A. Kolokithas-Ntoukas, A. Bakandritsos, J. Belza, P. Kesa, V. Herynek, J. Pankrac, A. Angelopoulou, O. Malina, K. Avgoustakis, V. Georgakilas, K. Polakova, R. Zboril
- 520 9_
- $a Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.
- 650 _2
- $a buňky A549 $7 D000072283
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a viabilita buněk $x účinky léků $7 D002470
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a magnetické nanočástice $x chemie $x toxicita $7 D058185
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a multimodální zobrazování $x metody $7 D064847
- 650 _2
- $a optoakustické techniky $x metody $7 D061088
- 650 _2
- $a fotochemické procesy $7 D055668
- 650 _2
- $a teranostická nanomedicína $x metody $7 D000068936
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Bakandritsos, Aristides $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic $u Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
- 700 1_
- $a Belza, Jan $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic $u Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 77146 Olomouc, Czech Republic
- 700 1_
- $a Kesa, Peter $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- 700 1_
- $a Herynek, Vit $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- 700 1_
- $a Pankrac, Jan $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- 700 1_
- $a Angelopoulou, Athina $u Department of Pharmacy, University of Patras, 26504 Rio, Greece
- 700 1_
- $a Malina, Ondrej $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
- 700 1_
- $a Avgoustakis, Konstantinos $u Department of Pharmacy, University of Patras, 26504 Rio, Greece
- 700 1_
- $a Georgakilas, Vasilios $u Department of Materials Science, University of Patras, 26504 Rio, Greece
- 700 1_
- $a Polakova, Katerina $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
- 700 1_
- $a Zboril, Radek $u Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
- 773 0_
- $w MED00179503 $t ACS applied materials & interfaces $x 1944-8252 $g Roč. 13, č. 25 (2021), s. 29247-29256
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33942606 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133744 $b ABA008
- 999 __
- $a ok $b bmc $g 1714531 $s 1146018
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 13 $c 25 $d 29247-29256 $e 20210504 $i 1944-8252 $m ACS applied materials & interfaces $n ACS Appl Mater Interfaces $x MED00179503
- LZP __
- $a Pubmed-20211013