• Je něco špatně v tomto záznamu ?

Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging

A. Kolokithas-Ntoukas, A. Bakandritsos, J. Belza, P. Kesa, V. Herynek, J. Pankrac, A. Angelopoulou, O. Malina, K. Avgoustakis, V. Georgakilas, K. Polakova, R. Zboril

. 2021 ; 13 (25) : 29247-29256. [pub] 20210504

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025511

Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025511
003      
CZ-PrNML
005      
20211026133738.0
007      
ta
008      
211013s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acsami.1c00908 $2 doi
035    __
$a (PubMed)33942606
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kolokithas-Ntoukas, Argiris $u Department of Materials Science, University of Patras, 26504 Rio, Greece $u Department of Pharmacy, University of Patras, 26504 Rio, Greece
245    10
$a Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging / $c A. Kolokithas-Ntoukas, A. Bakandritsos, J. Belza, P. Kesa, V. Herynek, J. Pankrac, A. Angelopoulou, O. Malina, K. Avgoustakis, V. Georgakilas, K. Polakova, R. Zboril
520    9_
$a Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.
650    _2
$a buňky A549 $7 D000072283
650    _2
$a zvířata $7 D000818
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a magnetické nanočástice $x chemie $x toxicita $7 D058185
650    _2
$a myši $7 D051379
650    _2
$a multimodální zobrazování $x metody $7 D064847
650    _2
$a optoakustické techniky $x metody $7 D061088
650    _2
$a fotochemické procesy $7 D055668
650    _2
$a teranostická nanomedicína $x metody $7 D000068936
655    _2
$a časopisecké články $7 D016428
700    1_
$a Bakandritsos, Aristides $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic $u Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
700    1_
$a Belza, Jan $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic $u Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 77146 Olomouc, Czech Republic
700    1_
$a Kesa, Peter $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
700    1_
$a Herynek, Vit $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
700    1_
$a Pankrac, Jan $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
700    1_
$a Angelopoulou, Athina $u Department of Pharmacy, University of Patras, 26504 Rio, Greece
700    1_
$a Malina, Ondrej $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
700    1_
$a Avgoustakis, Konstantinos $u Department of Pharmacy, University of Patras, 26504 Rio, Greece
700    1_
$a Georgakilas, Vasilios $u Department of Materials Science, University of Patras, 26504 Rio, Greece
700    1_
$a Polakova, Katerina $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
700    1_
$a Zboril, Radek $u Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
773    0_
$w MED00179503 $t ACS applied materials & interfaces $x 1944-8252 $g Roč. 13, č. 25 (2021), s. 29247-29256
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33942606 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133744 $b ABA008
999    __
$a ok $b bmc $g 1714531 $s 1146018
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 13 $c 25 $d 29247-29256 $e 20210504 $i 1944-8252 $m ACS applied materials & interfaces $n ACS Appl Mater Interfaces $x MED00179503
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...