• Something wrong with this record ?

An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution

L. Del Amo-Maestro, A. Sagar, P. Pompach, T. Goulas, C. Scavenius, DS. Ferrero, M. Castrillo-Briceño, M. Taulés, JJ. Enghild, P. Bernadó, FX. Gomis-Rüth

. 2021 ; 433 (13) : 166954. [pub] 20210324

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a 'fuzzy complex' that follows a 'dynamic zipper' mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025529
003      
CZ-PrNML
005      
20211026133729.0
007      
ta
008      
211013s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmb.2021.166954 $2 doi
035    __
$a (PubMed)33771572
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Del Amo-Maestro, Laura $u Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
245    13
$a An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution / $c L. Del Amo-Maestro, A. Sagar, P. Pompach, T. Goulas, C. Scavenius, DS. Ferrero, M. Castrillo-Briceño, M. Taulés, JJ. Enghild, P. Bernadó, FX. Gomis-Rüth
520    9_
$a Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a 'fuzzy complex' that follows a 'dynamic zipper' mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.
650    _2
$a protein ADAMTS13 $x metabolismus $7 D000071120
650    _2
$a reagencia zkříženě vázaná $x chemie $7 D003432
650    _2
$a lidé $7 D006801
650    _2
$a kinetika $7 D007700
650    _2
$a molekulární modely $7 D008958
650    _2
$a peptidy $x chemie $7 D010455
650    _2
$a vazba proteinů $7 D011485
650    12
$a posttranslační úpravy proteinů $7 D011499
650    _2
$a roztoky $7 D012996
650    _2
$a von Willebrandův faktor $x chemie $x izolace a purifikace $x metabolismus $7 D014841
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sagar, Amin $u Centre de Biochimie Structurale, INSERM, CNRS and Université de Montpellier, 34090 Montpellier, France
700    1_
$a Pompach, Petr $u Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czechia; Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czechia
700    1_
$a Goulas, Theodoros $u Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
700    1_
$a Scavenius, Carsten $u Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
700    1_
$a Ferrero, Diego S $u Laboratory for Viruses and Large Biological Complexes, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
700    1_
$a Castrillo-Briceño, Mariana $u Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
700    1_
$a Taulés, Marta $u Scientific and Technological Centers (CCiTUB), University of Barcelona, Lluís Solé i Sabaris, 1-3, 08028 Barcelona, Catalonia, Spain
700    1_
$a Enghild, Jan J $u Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
700    1_
$a Bernadó, Pau $u Centre de Biochimie Structurale, INSERM, CNRS and Université de Montpellier, 34090 Montpellier, France. Electronic address: pau.bernado@cbs.cnrs.fr
700    1_
$a Gomis-Rüth, F Xavier $u Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain. Electronic address: xgrcri@ibmb.csic.es
773    0_
$w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 433, č. 13 (2021), s. 166954
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33771572 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133735 $b ABA008
999    __
$a ok $b bmc $g 1714542 $s 1146036
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 433 $c 13 $d 166954 $e 20210324 $i 1089-8638 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
LZP    __
$a Pubmed-20211013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...