A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33322159
PubMed Central
PMC7763967
DOI
10.3390/biomedicines8120605
PII: biomedicines8120605
Knihovny.cz E-resources
- Keywords
- Bβ-chain gene, bleeding phenotype, functional analysis, hypofibrinogenemia, novel nonsense mutation, protein modelling,
- Publication type
- Journal Article MeSH
Congenital hypofibrinogenemia is a rare bleeding disorder characterized by a proportional decrease of functional and antigenic fibrinogen levels. Hypofibrinogenemia can be considered the phenotypic expression of heterozygous loss of function mutations occurring within one of the three fibrinogen genes (FGA, FGB, and FGG). Clinical manifestations are highly variable; most patients are usually asymptomatic, but may appear with mild to severe bleeding or thrombotic complications. We have sequenced all exons of the FGA, FGB, and FGG genes using the DNA isolated from the peripheral blood in two unrelated probands with mild hypofibrinogenemia. Coagulation screening, global hemostasis, and functional analysis tests were performed. Molecular modeling was used to predict the defect of synthesis and structural changes of the identified mutation. DNA sequencing revealed a novel heterozygous variant c.1421G>A in exon 8 of the FGB gene encoding a Bβ chain (p.Trp474Ter) in both patients. Clinical data from patients showed bleeding episodes. Protein modelling confirmed changes in the secondary structure of the molecule, with the loss of three β sheet arrangements. As expected by the low fibrinogen levels, turbidity analyses showed a reduced fibrin polymerisation and imaging difference in thickness fibrin fibers. We have to emphasize that our patients have a quantitative fibrinogen disorder; therefore, the reduced function is due to the reduced concentration of fibrinogen, since the Bβ chains carrying the mutation predicted to be retained inside the cell. The study of fibrinogen molecules using protein modelling may help us to understand causality and effect of novel genetic mutations.
See more in PubMed
Tiscia L.G., Margaglione M. Human Fibrinogen: Molecular and Genetic Aspects of Congenital Disorders. Int. J. Mol. Sci. 2018;19:1597. doi: 10.3390/ijms19061597. PubMed DOI PMC
Weisel J.W., Litvinov R. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017;82:405–456. PubMed PMC
Casini A., Undas A., Palla R., Thachil. J ., de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018;16:1887–1890. doi: 10.1111/jth.14216. PubMed DOI
Simurda T., Zolkova J., Snahnicanova Z., Loderer D., Skornova I., Sokol J., Hudecek J., Stasko J., Lasabova Z., Kubisz P. Identification of Two Novel Fibrinogen Bβ Chain Mutations in Two Slovak Families with Quantitative Fibrinogen Disorders. Int. J. Mol. Sci. 2018;19:100. doi: 10.3390/ijms19010100. PubMed DOI PMC
Simurda T., Casini A., Stasko J., Hudecek J., Skornova I., Vilar R., Neerman-Arbez M., Kubisz P. Perioperative Management of a Severe Congenital Hypofibrinogenemia With Thrombotic Phenotype. Thromb. Res. 2020;188:1–4. doi: 10.1016/j.thromres.2020.01.024. PubMed DOI
Casini A., Blondon M., Tintillier V., Goodyer M., Sezgin M.E., Gunes A.M., Hanss M., De Moerloose P., Neerman Arbez M. Mutational Epidemiology of Congenital Fibrinogen Disorders. Thromb. Haemost. 2018;118:1867–1874. doi: 10.1055/s-0038-1673685. PubMed DOI
Kotlin R., Chytilova M., Suttnar J., Salaj P., Riedel T., Santruček J., Klener P., Dyr J.E. A novel fibrinogen variant-praha I: Hypofibrinogenemia associated with gamma Gly351Ser substitution. Eur. J. Haematol. 2007;78:410–416. doi: 10.1111/j.1600-0609.2007.00838.x. PubMed DOI
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:296–303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Spraggon G., Everse S.J., Doolittle R.F. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997;389:455–462. doi: 10.1038/38947. PubMed DOI
Casini A., Vilar R., Beauverd Y., Aslan D., Devreese K., Mondelaers V., Alberio L., Gubert C., De Moerloose P., Neerman-Arbez M. Protein modelling to understand FGB mutations leading to congenital hypofibrinogenaemia. Haemophilia. 2017;23:583–589. doi: 10.1111/hae.13190. PubMed DOI
Naz A., Biswas A., Khan T.N., Goodeve A., Ahmed N., Saqlain N., Ahmed S., Ujjan I.D., Shamsi T.S., Oldenburg J. Identification of novel mutations in congenital afibrinogenemia patients and molecular modeling of missense mutations in Pakistani population. Thromb. J. 2017;15:24. doi: 10.1186/s12959-017-0143-3. PubMed DOI PMC
Simurda T., Snahnicanova Z., Loderer D., Zolkova J., Skornova I., Sokol J., Hudecek J., Stasko J., Lasabova Z., Kubisz P. Fibrinogen Martin: A Novel Mutation in FGB (Gln180Stop) Causing Congenital Afibrinogenemia. Semin. Thromb. Hemost. 2016;42:455–458. PubMed
Asselta R., Duga S., Tenchini M.L. The molecular basis of quantitative fibrinogen disorders. J. Thromb. Haemost. 2006;4:2115–2129. doi: 10.1111/j.1538-7836.2006.02094.x. PubMed DOI
Vu D., Di Sanza C., Caille D., De Moerloose P., Scheib H., Meda P., Neerman-Arbez M. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum. Mol. Genet. 2005;14:3271–3280. doi: 10.1093/hmg/ddi360. PubMed DOI
Neerman-Arbez M., Casini A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int. J. Mol. Sci. 2018;19:192. doi: 10.3390/ijms19010192. PubMed DOI PMC
Peyvandi F., Haertel S., Knaub S., Mannucci P.M. Incidence of bleeding symptoms in 100 patients with inherited afibrinogenemia or hypofibrinogenemia. J. Thromb. Haemost. 2006;4:1634–1637. doi: 10.1111/j.1538-7836.2006.02014.x. PubMed DOI
Cai H., Liang H., Yang J., Zhang X. Congenital hypofibrinogenemia in pregnancy: A report of 11 cases. Blood Coagul. Fibrinolysis. 2018;29:155–159. doi: 10.1097/MBC.0000000000000676. PubMed DOI PMC
Simurda T., Stanciakova L., Stasko J., Dobrotova M., Kubisz P. Yes or no for secondary prophylaxis in afibrinogenemia? Blood Coagul. Fibrinolysis. 2015;26:978–980. doi: 10.1097/MBC.0000000000000392. PubMed DOI
Casini A., de Moerloose P. Fibrinogen concentrates in hereditary fibrinogen disorders: Past, present and future. Haemophilia. 2020;26:25–32. doi: 10.1111/hae.13876. PubMed DOI
Medved L., Tsyurupa G., Jakovlev S. Conformational changes upon conversion of fibrinogen into fibrin: The mechanisms of exposure of some cryptic sites. Ann. N. Y. Acad. Sci. 2001;936:185–204. doi: 10.1111/j.1749-6632.2001.tb03505.x. PubMed DOI
Hunt B.J., Segal H. Hyperfibrinolysis. J. Clin. Pathol. 1996;49:958. doi: 10.1136/jcp.49.12.958. PubMed DOI PMC
Lord S.T. Molecular mechanisms affecting fibrin structure and stability. Arterioscler. Thromb. Vasc. Biol. 2011;31:494–499. doi: 10.1161/ATVBAHA.110.213389. PubMed DOI PMC
Weisel J.W. Fibrinogen and fibrin. Adv. Protein Chem. 2005;70:247–299. PubMed
Cushman M., Cornell A., Folsom A.R., Wang L., Tsai M.Y., Polak J., Tang Z. Associations of the beta-fibrinogen Hae III and factor XIII Val34Leu gene variants with venous thrombosis. Thromb. Res. 2007;121:339–345. doi: 10.1016/j.thromres.2007.05.009. PubMed DOI PMC
Chapin J.C., Hajjar K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24. doi: 10.1016/j.blre.2014.09.003. PubMed DOI PMC
Marchi R., Brennan S., Meyer M., Rojas H., Kanzler D., De Agrela M., Ruiz-Saez A. A Novel Mutation in the FGB: C.1105C>T Turns the Codon for Amino Acid Bβ Q339 Into a Stop Codon Causing Hypofibrinogenemia. Blood Cells Mol. Dis. 2013;50:177–181. doi: 10.1016/j.bcmd.2012.11.010. PubMed DOI
Castaman G., Giacomelli S.H., Duga S., Rodeghiero F. Congenital hypofibrinogenemia associated with novel heterozygous fibrinogen Bβ and γ chain mutations. Haemophilia. 2008;14:630–633. doi: 10.1111/j.1365-2516.2008.01692.x. PubMed DOI
Hanss M., Ffrench P., Vinciguerra C., Bertrand M.A., De Mazancourt P. Four Cases of Hypofibrinogenemia Associated with Four Novel Mutations. J. Thromb. Haemost. 2005;3:2347–2349. doi: 10.1111/j.1538-7836.2005.01580.x. PubMed DOI
Aung N.N., Kennedy H., Faed J.M., Brennan S.O. Novel Heterozygous Bβ (c.1311T>A) Mutation (Fibrinogen St Kilda) Associated with Recurrent Pregnancy Loss. Pathology. 2015;47:583–585. doi: 10.1097/PAT.0000000000000307. PubMed DOI
Homer V.M., Brennan S.O., Ockelford P., George P.M. Novel fibrinogen truncation with deletion of Bbeta chain residues 440–461 causes hypofibrinogenaemia. Thromb. Haemost. 2002;88:427–431. PubMed
Vu D., Neerman-Arbez M. Molecular mechanisms accounting for fibrinogen deficiency: From large deletions to intracellular retention of misfolded proteins. J. Thromb. Haemost. 2007;5:125–131. doi: 10.1111/j.1538-7836.2007.02465.x. PubMed DOI