• This record comes from PubMed

A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype

. 2020 Dec 13 ; 8 (12) : . [epub] 20201213

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 33322159
PubMed Central PMC7763967
DOI 10.3390/biomedicines8120605
PII: biomedicines8120605
Knihovny.cz E-resources

Congenital hypofibrinogenemia is a rare bleeding disorder characterized by a proportional decrease of functional and antigenic fibrinogen levels. Hypofibrinogenemia can be considered the phenotypic expression of heterozygous loss of function mutations occurring within one of the three fibrinogen genes (FGA, FGB, and FGG). Clinical manifestations are highly variable; most patients are usually asymptomatic, but may appear with mild to severe bleeding or thrombotic complications. We have sequenced all exons of the FGA, FGB, and FGG genes using the DNA isolated from the peripheral blood in two unrelated probands with mild hypofibrinogenemia. Coagulation screening, global hemostasis, and functional analysis tests were performed. Molecular modeling was used to predict the defect of synthesis and structural changes of the identified mutation. DNA sequencing revealed a novel heterozygous variant c.1421G>A in exon 8 of the FGB gene encoding a Bβ chain (p.Trp474Ter) in both patients. Clinical data from patients showed bleeding episodes. Protein modelling confirmed changes in the secondary structure of the molecule, with the loss of three β sheet arrangements. As expected by the low fibrinogen levels, turbidity analyses showed a reduced fibrin polymerisation and imaging difference in thickness fibrin fibers. We have to emphasize that our patients have a quantitative fibrinogen disorder; therefore, the reduced function is due to the reduced concentration of fibrinogen, since the Bβ chains carrying the mutation predicted to be retained inside the cell. The study of fibrinogen molecules using protein modelling may help us to understand causality and effect of novel genetic mutations.

See more in PubMed

Tiscia L.G., Margaglione M. Human Fibrinogen: Molecular and Genetic Aspects of Congenital Disorders. Int. J. Mol. Sci. 2018;19:1597. doi: 10.3390/ijms19061597. PubMed DOI PMC

Weisel J.W., Litvinov R. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017;82:405–456. PubMed PMC

Casini A., Undas A., Palla R., Thachil. J ., de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018;16:1887–1890. doi: 10.1111/jth.14216. PubMed DOI

Simurda T., Zolkova J., Snahnicanova Z., Loderer D., Skornova I., Sokol J., Hudecek J., Stasko J., Lasabova Z., Kubisz P. Identification of Two Novel Fibrinogen Bβ Chain Mutations in Two Slovak Families with Quantitative Fibrinogen Disorders. Int. J. Mol. Sci. 2018;19:100. doi: 10.3390/ijms19010100. PubMed DOI PMC

Simurda T., Casini A., Stasko J., Hudecek J., Skornova I., Vilar R., Neerman-Arbez M., Kubisz P. Perioperative Management of a Severe Congenital Hypofibrinogenemia With Thrombotic Phenotype. Thromb. Res. 2020;188:1–4. doi: 10.1016/j.thromres.2020.01.024. PubMed DOI

Casini A., Blondon M., Tintillier V., Goodyer M., Sezgin M.E., Gunes A.M., Hanss M., De Moerloose P., Neerman Arbez M. Mutational Epidemiology of Congenital Fibrinogen Disorders. Thromb. Haemost. 2018;118:1867–1874. doi: 10.1055/s-0038-1673685. PubMed DOI

Kotlin R., Chytilova M., Suttnar J., Salaj P., Riedel T., Santruček J., Klener P., Dyr J.E. A novel fibrinogen variant-praha I: Hypofibrinogenemia associated with gamma Gly351Ser substitution. Eur. J. Haematol. 2007;78:410–416. doi: 10.1111/j.1600-0609.2007.00838.x. PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:296–303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Spraggon G., Everse S.J., Doolittle R.F. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997;389:455–462. doi: 10.1038/38947. PubMed DOI

Casini A., Vilar R., Beauverd Y., Aslan D., Devreese K., Mondelaers V., Alberio L., Gubert C., De Moerloose P., Neerman-Arbez M. Protein modelling to understand FGB mutations leading to congenital hypofibrinogenaemia. Haemophilia. 2017;23:583–589. doi: 10.1111/hae.13190. PubMed DOI

Naz A., Biswas A., Khan T.N., Goodeve A., Ahmed N., Saqlain N., Ahmed S., Ujjan I.D., Shamsi T.S., Oldenburg J. Identification of novel mutations in congenital afibrinogenemia patients and molecular modeling of missense mutations in Pakistani population. Thromb. J. 2017;15:24. doi: 10.1186/s12959-017-0143-3. PubMed DOI PMC

Simurda T., Snahnicanova Z., Loderer D., Zolkova J., Skornova I., Sokol J., Hudecek J., Stasko J., Lasabova Z., Kubisz P. Fibrinogen Martin: A Novel Mutation in FGB (Gln180Stop) Causing Congenital Afibrinogenemia. Semin. Thromb. Hemost. 2016;42:455–458. PubMed

Asselta R., Duga S., Tenchini M.L. The molecular basis of quantitative fibrinogen disorders. J. Thromb. Haemost. 2006;4:2115–2129. doi: 10.1111/j.1538-7836.2006.02094.x. PubMed DOI

Vu D., Di Sanza C., Caille D., De Moerloose P., Scheib H., Meda P., Neerman-Arbez M. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum. Mol. Genet. 2005;14:3271–3280. doi: 10.1093/hmg/ddi360. PubMed DOI

Neerman-Arbez M., Casini A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int. J. Mol. Sci. 2018;19:192. doi: 10.3390/ijms19010192. PubMed DOI PMC

Peyvandi F., Haertel S., Knaub S., Mannucci P.M. Incidence of bleeding symptoms in 100 patients with inherited afibrinogenemia or hypofibrinogenemia. J. Thromb. Haemost. 2006;4:1634–1637. doi: 10.1111/j.1538-7836.2006.02014.x. PubMed DOI

Cai H., Liang H., Yang J., Zhang X. Congenital hypofibrinogenemia in pregnancy: A report of 11 cases. Blood Coagul. Fibrinolysis. 2018;29:155–159. doi: 10.1097/MBC.0000000000000676. PubMed DOI PMC

Simurda T., Stanciakova L., Stasko J., Dobrotova M., Kubisz P. Yes or no for secondary prophylaxis in afibrinogenemia? Blood Coagul. Fibrinolysis. 2015;26:978–980. doi: 10.1097/MBC.0000000000000392. PubMed DOI

Casini A., de Moerloose P. Fibrinogen concentrates in hereditary fibrinogen disorders: Past, present and future. Haemophilia. 2020;26:25–32. doi: 10.1111/hae.13876. PubMed DOI

Medved L., Tsyurupa G., Jakovlev S. Conformational changes upon conversion of fibrinogen into fibrin: The mechanisms of exposure of some cryptic sites. Ann. N. Y. Acad. Sci. 2001;936:185–204. doi: 10.1111/j.1749-6632.2001.tb03505.x. PubMed DOI

Hunt B.J., Segal H. Hyperfibrinolysis. J. Clin. Pathol. 1996;49:958. doi: 10.1136/jcp.49.12.958. PubMed DOI PMC

Lord S.T. Molecular mechanisms affecting fibrin structure and stability. Arterioscler. Thromb. Vasc. Biol. 2011;31:494–499. doi: 10.1161/ATVBAHA.110.213389. PubMed DOI PMC

Weisel J.W. Fibrinogen and fibrin. Adv. Protein Chem. 2005;70:247–299. PubMed

Cushman M., Cornell A., Folsom A.R., Wang L., Tsai M.Y., Polak J., Tang Z. Associations of the beta-fibrinogen Hae III and factor XIII Val34Leu gene variants with venous thrombosis. Thromb. Res. 2007;121:339–345. doi: 10.1016/j.thromres.2007.05.009. PubMed DOI PMC

Chapin J.C., Hajjar K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24. doi: 10.1016/j.blre.2014.09.003. PubMed DOI PMC

Marchi R., Brennan S., Meyer M., Rojas H., Kanzler D., De Agrela M., Ruiz-Saez A. A Novel Mutation in the FGB: C.1105C>T Turns the Codon for Amino Acid Bβ Q339 Into a Stop Codon Causing Hypofibrinogenemia. Blood Cells Mol. Dis. 2013;50:177–181. doi: 10.1016/j.bcmd.2012.11.010. PubMed DOI

Castaman G., Giacomelli S.H., Duga S., Rodeghiero F. Congenital hypofibrinogenemia associated with novel heterozygous fibrinogen Bβ and γ chain mutations. Haemophilia. 2008;14:630–633. doi: 10.1111/j.1365-2516.2008.01692.x. PubMed DOI

Hanss M., Ffrench P., Vinciguerra C., Bertrand M.A., De Mazancourt P. Four Cases of Hypofibrinogenemia Associated with Four Novel Mutations. J. Thromb. Haemost. 2005;3:2347–2349. doi: 10.1111/j.1538-7836.2005.01580.x. PubMed DOI

Aung N.N., Kennedy H., Faed J.M., Brennan S.O. Novel Heterozygous Bβ (c.1311T>A) Mutation (Fibrinogen St Kilda) Associated with Recurrent Pregnancy Loss. Pathology. 2015;47:583–585. doi: 10.1097/PAT.0000000000000307. PubMed DOI

Homer V.M., Brennan S.O., Ockelford P., George P.M. Novel fibrinogen truncation with deletion of Bbeta chain residues 440–461 causes hypofibrinogenaemia. Thromb. Haemost. 2002;88:427–431. PubMed

Vu D., Neerman-Arbez M. Molecular mechanisms accounting for fibrinogen deficiency: From large deletions to intracellular retention of misfolded proteins. J. Thromb. Haemost. 2007;5:125–131. doi: 10.1111/j.1538-7836.2007.02465.x. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...