Structural and Functional Characterization of Four Novel Fibrinogen Mutations in FGB Causing Congenital Fibrinogen Disorder
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
00023736
The Ministry of Health of the Czech Republic
PubMed
35054908
PubMed Central
PMC8775743
DOI
10.3390/ijms23020721
PII: ijms23020721
Knihovny.cz E-zdroje
- Klíčová slova
- FGB, afibrinogenemia, congenital fibrinogen disorder, dysfibrinogenemia, functional assays, homology modeling, hypofibrinogenemia, scanning electron microscopy,
- MeSH
- afibrinogenemie krev diagnóza genetika MeSH
- fenotyp * MeSH
- fibrinogen chemie genetika metabolismus MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- hemokoagulace MeSH
- konformace proteinů MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- molekulární modely MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- novorozenec MeSH
- senioři MeSH
- vyšetření krevní srážlivosti MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- FGB protein, human MeSH Prohlížeč
- fibrinogen MeSH
Congenital fibrinogen disorders are caused by mutations in genes coding for fibrinogen and may lead to various clinical phenotypes. Here, we present a functional and structural analysis of 4 novel variants located in the FGB gene coding for fibrinogen Bβ chain-heterozygous missense BβY416C and BβA68S, homozygous nonsense BβY345*, and heterozygous nonsense BβW403* mutations. The cases were identified by coagulation screening tests and further investigated by various methods. Fibrin polymerization had abnormal development with decreased maximal absorbance in all patients. Plasmin-induced fibrin degradation revealed different lytic phases of BβY416C and BβW403* than those of the control. Fibrinopeptide cleavage measured by reverse phase high pressure liquid chromatography of BβA68S showed impaired release of fibrinopeptide B. Morphological properties, studied through scanning electron microscopy, differed significantly in the fiber thickness of BβY416C, BβA68S, and BβW403*, and in the fiber density of BβY416C and BβW403*. Finally, homology modeling of BβA68S showed that mutation caused negligible alternations in the protein structure. In conclusion, all mutations altered the correct fibrinogen function or structure that led to congenital fibrinogen disorders.
Zobrazit více v PubMed
Henschen A., Mcdonagh J. Chapter 7 Fibrinogen, fibrin and factor XIII. New Compr. Biochem. 1986;13:171–241. doi: 10.1016/S0167-730660053-8. DOI
Fowler W.E., Erickson H.P. Trinodular structure of fibrinogen: Confirmation by both shadowing and negative stain electron microscopy. J. Mol. Biol. 1979;134:241–249. doi: 10.1016/0022-2836(79)90034-2. PubMed DOI
Medved L., Weisel J.W. Fibrinogen; of Scientific Standardization Committee of International Society on Thrombosis; Haemostasis Recommendations for nomenclature on fibrinogen and fibrin. J. Thromb. Haemost. 2009;7:355–359. doi: 10.1111/j.1538-7836.2008.03242.x. PubMed DOI PMC
Casini A., Undas A., Palla R., Thachil J., de Moerloose P. Diagnosis and classification of congenital fibrinogen disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018;16:1887–1890. doi: 10.1111/jth.14216. PubMed DOI
Casini A., Neerman-Arbez M., Ariëns R.A., de Moerloose P. Dysfibrinogenemia: From molecular anomalies to clinical manifestations and management. J. Thromb. Haemost. 2015;13:909–919. doi: 10.1111/jth.12916. PubMed DOI
Neerman-Arbez M., Casini A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int. J. Mol. Sci. 2018;19:192. doi: 10.3390/ijms19010192. PubMed DOI PMC
Hanss M., Biot F. A database for human fibrinogen variants. Ann. N. Y. Acad. Sci. 2001;936:89–90. doi: 10.1111/j.1749-6632.2001.tb03495.x. PubMed DOI
Casini A., Lukowski S., Quintard V.L., Crutu A., Zak M., Regazzoni S., De Moerloose P., Neerman-Arbez M. FGB mutations leading to congenital quantitative fibrinogen deficiencies: An update and report of four novel mutations. Thromb. Res. 2014;133:868–874. doi: 10.1016/j.thromres.2014.01.022. PubMed DOI
Vu D., Di Sanza C., Caille D., de Moerloose P., Scheib H., Meda P., Neerman-Arbez M. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum. Mol. Genet. 2005;14:3271–3280. doi: 10.1093/hmg/ddi360. PubMed DOI
Neerman-Arbez M., De Moerloose P., Casini A. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders. Semin. Thromb. Hemost. 2016;42:356–365. doi: 10.1055/S-0036-1571340. PubMed DOI
Sumitha E., Jayandharan G.R., Arora N., Abraham A., David S., Devi G.S., Shenbagapriya P., Nair S.C., George B., Mathews V., et al. Molecular basis of quantitative fibrinogen disorders in 27 patients from India. Haemophilia. 2013;19:611–618. doi: 10.1111/hae.12143. PubMed DOI
Casini A., Vilar R., Beauverd Y., Aslan D., Devreese K., Mondelaers V., Alberio L., Gubert C., de Moerloose P., Neerman-Arbez M. Protein modelling to understand FGB mutations leading to congenital hypofibrinogenaemia. Haemophilia. 2017;23:583–589. doi: 10.1111/hae.13190. PubMed DOI
Koopman J., Haverkate F., Lord S., Grimbergen J., Mannucci P. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. Homozygous substitution of B beta 68 Ala—Thr. J. Clin. Investig. 1992;90:238–244. doi: 10.1172/JCI115841. PubMed DOI PMC
Zhou J., Ding Q., Chen Y., Ouyang Q., Jiang L., Dai J., Lu Y., Wu X., Liang Q., Wang H., et al. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells. Mol. Dis. 2015;55:308–315. doi: 10.1016/j.bcmd.2015.06.002. PubMed DOI
Yoshida S., Kibe T., Matsubara R., Koizumi S., Nara K., Amano K., Okumura N. Congenital dysfibrinogenemia in a Japanese family with fibrinogen Naples (BβAla68Thr) manifesting as superior sagittal sinus thrombosis. Blood Coagul. Fibrinolysis. 2017;28:580–584. doi: 10.1097/MBC.0000000000000641. PubMed DOI
Meh D.A., Mosesson M.W., Siebenlist K.R., Simpson-Haidaris P.J., Brennan S.O., DiOrio J.P., Thompson K., Di Minno G. Fibrinogen naples I (B beta A68T) nonsubstrate thrombin-binding capacities. Thromb. Res. 2001;103:63–73. doi: 10.1016/S0049-3848(01)00273-0. PubMed DOI
Di Minno G., Martinez J., Cirillo F., Cerbone A.M., Silver M.J., Colucci M., Margaglione M., Tauro R., Semeraro N., Quattrone A., et al. A role for platelets and thrombin in the juvenile stroke of two siblings with defective thrombin-adsorbing capacity of fibrin(ogen) Arterioscler. Thromb. J. Vasc. Biol. 1991;11:785–796. doi: 10.1161/01.ATV.11.4.785. PubMed DOI
Kotlín R., Reicheltová Z., Sobotková A., Suttnar J., Salaj P., Pospíšilová D., Smejkal P., Chrastinová L., Dyr J.E. Three cases of abnormal fibrinogens: Sumperk (Bbeta His67Leu), Unicov (Bbeta Gly414Ser), and Brno (gammaArg275His) Thromb. Haemost. 2008;100:1199–1200. PubMed
Kotlin R., Reicheltova Z., Suttnar J., Salaj P., Hrachovinova I., Riedel T., Maly M., Oravec M., Kvasnicka J., Dyr J.E. Two novel fibrinogen variants in the C-terminus of the Bbeta-chain: Fibrinogen Rokycany and fibrinogen Znojmo. J. Thromb. Thrombolysis. 2010;30:311–318. doi: 10.1007/s11239-010-0505-1. PubMed DOI
Duga S., Asselta R., Santagostino E., Zeinali S., Simonic T., Malcovati M., Mannucci P.M., Tenchini M.L. Missense mutations in the human β fibrinogen gene cause congenital afibrinogenemia by impairing fibrinogen secretion. Blood. 2000;95:1336–1341. doi: 10.1182/blood.V95.4.1336.004k16_1336_1341. PubMed DOI
Hanss M., Ffrench P., Vinciguerra C., Bertrands M.A., De Mazancourt P. Four cases of hypofibrinogenemia associated with four novel mutations. J. Thromb. Haemost. 2005;3:2347–2349. doi: 10.1111/j.1538-7836.2005.01580.x. PubMed DOI
Aung N.N., Kennedy H., Faed J.M., Brennan S.O. Novel heterozygous Bbeta (c.1311T>A) mutation (Fibrinogen St Kilda) associated with recurrent pregnancy loss. Pathology. 2015;47:583–585. doi: 10.1097/PAT.0000000000000307. PubMed DOI
Zhang J.Z., Redman C.M. Identification of B beta chain domains involved in human fibrinogen assembly. J. Biol. Chem. 1992;267:21727–21732. doi: 10.1016/S0021-9258(19)36672-4. PubMed DOI
Simurda T., Vilar R., Zolkova J., Ceznerova E., Kolkova Z., Loderer D., Neerman-Arbez M., Casini A., Brunclikova M., Skornova I., et al. A novel nonsense mutation in fgb (C.1421g>a; p.trp474ter) in the beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype. Biomedicines. 2020;8:605. doi: 10.3390/biomedicines8120605. PubMed DOI PMC
Carr M.E., Gabriel D.A., McDonagh J. Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem. J. 1986;239:513–516. doi: 10.1042/bj2390513. PubMed DOI PMC
Nair C.H., Shah G.A., Dhall D.P. Effect of temperature, pH and ionic strength and composition on fibrin network structure and its development. Thromb. Res. 1986;42:809–816. doi: 10.1016/0049-3848(86)90117-9. PubMed DOI
Weisel J.W., Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: Clot structure and assembly are kinetically controlled. Biophys. J. 1992;63:111–128. doi: 10.1016/S0006-3495(92)81594-1. PubMed DOI PMC
Wolberg A.S. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21:131–142. doi: 10.1016/j.blre.2006.11.001. PubMed DOI
Gabriel D.A., Muga K., Boothroyd E.M. The effect of fibrin structure on fibrinolysis. J. Biol. Chem. 1992;267:24259–24263. doi: 10.1016/S0021-9258(18)35759-4. PubMed DOI
Torbet J. Fibrin assembly in human plasma and fibrinogen/albumin mixtures. Biochemistry. 1986;25:5309–5314. doi: 10.1021/bi00366a048. PubMed DOI
Cai H., Liang M., Yang J., Zhang X. Congenital hypofibrinogenemia in pregnancy: A report of 11 cases. Blood Coagul. Fibrinolysis. 2018;29:155–159. doi: 10.1097/MBC.0000000000000676. PubMed DOI PMC
Sammaritano L.R. Antiphospholipid syndrome. Best Pract. Res. Clin. Rheumatol. 2020;34 doi: 10.1016/j.berh.2019.101463. PubMed DOI
Mullin J.L., Gorkun O.V., Lord S.T. Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism. Biochemistry. 2000;39:9843–9849. doi: 10.1021/bi000045c. PubMed DOI
Lord S.T., Strickland E., Jayjock E. Strategy for recombinant multichain protein synthesis: Fibrinogen B beta-chain variants as thrombin substrates. Biochemistry. 1996;35:2342–2348. doi: 10.1021/bi952353u. PubMed DOI
Kamijo T., Nagata K., Taira C., Higuchi Y., Arai S., Okumura N. Fibrin monomers derived from thrombogenic dysfibrinogenemia, Naples-type variant (BβAla68Thr), showed almost entirely normal polymerization. Thromb. Res. 2018;172:1–3. doi: 10.1016/j.thromres.2018.10.004. PubMed DOI
Brennan S.O., Roncolato F. Novel fibrinogen (B β401Gly→Val) presents as dys- or hypodysfibrinogenaemia due to alterations in sialic acid content. Thromb. Haemost. 2011;106:551–553. doi: 10.1160/TH11-05-0287. PubMed DOI
De Vries J.J., Snoek C.J.M., Rijken D.C., De Maat M.P.M. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis: A systematic review. Arterioscler. Thromb. Vasc. Biol. 2019;40:554–569. doi: 10.1161/ATVBAHA.119.313626. PubMed DOI PMC
Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957;17:237–246. doi: 10.1159/000205234. PubMed DOI
Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler A.D. The Human Genome Browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC
Brennan S.O., Hammonds B., George P.M. Aberrant hepatic processing causes removal of activation peptide and primary polymerisation site from fibrinogen Canterbury (A alpha 20 Val –> Asp) J. Clin. Investig. 1995;96:2854–2858. doi: 10.1172/JCI118356. PubMed DOI PMC
Suttnar J., Dyr J.E., Fořtová H., Pristach J. Determination of fibrinonopeptides by high resolution liquid chromotagraphy. Biochem. Clin. Bohemoslov. 1989;18:17–25.
Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinforma. 2016;54:5–6. doi: 10.1002/cpbi.3. PubMed DOI PMC
Kollman J.M., Pandi L., Sawaya M.R., Riley M., Doolittle R.F. Crystal structure of human fibrinogen. Biochemistry. 2009;48:3877–3886. doi: 10.1021/bi802205g. PubMed DOI
Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993;26:283–291. doi: 10.1107/S0021889892009944. DOI
Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30:S162–S173. doi: 10.1002/elps.200900140. PubMed DOI
Kabsch W., Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI