Structural and Functional Characterization of Four Novel Fibrinogen Mutations in FGB Causing Congenital Fibrinogen Disorder

. 2022 Jan 10 ; 23 (2) : . [epub] 20220110

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054908

Grantová podpora
00023736 The Ministry of Health of the Czech Republic

Congenital fibrinogen disorders are caused by mutations in genes coding for fibrinogen and may lead to various clinical phenotypes. Here, we present a functional and structural analysis of 4 novel variants located in the FGB gene coding for fibrinogen Bβ chain-heterozygous missense BβY416C and BβA68S, homozygous nonsense BβY345*, and heterozygous nonsense BβW403* mutations. The cases were identified by coagulation screening tests and further investigated by various methods. Fibrin polymerization had abnormal development with decreased maximal absorbance in all patients. Plasmin-induced fibrin degradation revealed different lytic phases of BβY416C and BβW403* than those of the control. Fibrinopeptide cleavage measured by reverse phase high pressure liquid chromatography of BβA68S showed impaired release of fibrinopeptide B. Morphological properties, studied through scanning electron microscopy, differed significantly in the fiber thickness of BβY416C, BβA68S, and BβW403*, and in the fiber density of BβY416C and BβW403*. Finally, homology modeling of BβA68S showed that mutation caused negligible alternations in the protein structure. In conclusion, all mutations altered the correct fibrinogen function or structure that led to congenital fibrinogen disorders.

Zobrazit více v PubMed

Henschen A., Mcdonagh J. Chapter 7 Fibrinogen, fibrin and factor XIII. New Compr. Biochem. 1986;13:171–241. doi: 10.1016/S0167-730660053-8. DOI

Fowler W.E., Erickson H.P. Trinodular structure of fibrinogen: Confirmation by both shadowing and negative stain electron microscopy. J. Mol. Biol. 1979;134:241–249. doi: 10.1016/0022-2836(79)90034-2. PubMed DOI

Medved L., Weisel J.W. Fibrinogen; of Scientific Standardization Committee of International Society on Thrombosis; Haemostasis Recommendations for nomenclature on fibrinogen and fibrin. J. Thromb. Haemost. 2009;7:355–359. doi: 10.1111/j.1538-7836.2008.03242.x. PubMed DOI PMC

Casini A., Undas A., Palla R., Thachil J., de Moerloose P. Diagnosis and classification of congenital fibrinogen disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018;16:1887–1890. doi: 10.1111/jth.14216. PubMed DOI

Casini A., Neerman-Arbez M., Ariëns R.A., de Moerloose P. Dysfibrinogenemia: From molecular anomalies to clinical manifestations and management. J. Thromb. Haemost. 2015;13:909–919. doi: 10.1111/jth.12916. PubMed DOI

Neerman-Arbez M., Casini A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int. J. Mol. Sci. 2018;19:192. doi: 10.3390/ijms19010192. PubMed DOI PMC

Hanss M., Biot F. A database for human fibrinogen variants. Ann. N. Y. Acad. Sci. 2001;936:89–90. doi: 10.1111/j.1749-6632.2001.tb03495.x. PubMed DOI

Casini A., Lukowski S., Quintard V.L., Crutu A., Zak M., Regazzoni S., De Moerloose P., Neerman-Arbez M. FGB mutations leading to congenital quantitative fibrinogen deficiencies: An update and report of four novel mutations. Thromb. Res. 2014;133:868–874. doi: 10.1016/j.thromres.2014.01.022. PubMed DOI

Vu D., Di Sanza C., Caille D., de Moerloose P., Scheib H., Meda P., Neerman-Arbez M. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum. Mol. Genet. 2005;14:3271–3280. doi: 10.1093/hmg/ddi360. PubMed DOI

Neerman-Arbez M., De Moerloose P., Casini A. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders. Semin. Thromb. Hemost. 2016;42:356–365. doi: 10.1055/S-0036-1571340. PubMed DOI

Sumitha E., Jayandharan G.R., Arora N., Abraham A., David S., Devi G.S., Shenbagapriya P., Nair S.C., George B., Mathews V., et al. Molecular basis of quantitative fibrinogen disorders in 27 patients from India. Haemophilia. 2013;19:611–618. doi: 10.1111/hae.12143. PubMed DOI

Casini A., Vilar R., Beauverd Y., Aslan D., Devreese K., Mondelaers V., Alberio L., Gubert C., de Moerloose P., Neerman-Arbez M. Protein modelling to understand FGB mutations leading to congenital hypofibrinogenaemia. Haemophilia. 2017;23:583–589. doi: 10.1111/hae.13190. PubMed DOI

Koopman J., Haverkate F., Lord S., Grimbergen J., Mannucci P. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. Homozygous substitution of B beta 68 Ala—Thr. J. Clin. Investig. 1992;90:238–244. doi: 10.1172/JCI115841. PubMed DOI PMC

Zhou J., Ding Q., Chen Y., Ouyang Q., Jiang L., Dai J., Lu Y., Wu X., Liang Q., Wang H., et al. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells. Mol. Dis. 2015;55:308–315. doi: 10.1016/j.bcmd.2015.06.002. PubMed DOI

Yoshida S., Kibe T., Matsubara R., Koizumi S., Nara K., Amano K., Okumura N. Congenital dysfibrinogenemia in a Japanese family with fibrinogen Naples (BβAla68Thr) manifesting as superior sagittal sinus thrombosis. Blood Coagul. Fibrinolysis. 2017;28:580–584. doi: 10.1097/MBC.0000000000000641. PubMed DOI

Meh D.A., Mosesson M.W., Siebenlist K.R., Simpson-Haidaris P.J., Brennan S.O., DiOrio J.P., Thompson K., Di Minno G. Fibrinogen naples I (B beta A68T) nonsubstrate thrombin-binding capacities. Thromb. Res. 2001;103:63–73. doi: 10.1016/S0049-3848(01)00273-0. PubMed DOI

Di Minno G., Martinez J., Cirillo F., Cerbone A.M., Silver M.J., Colucci M., Margaglione M., Tauro R., Semeraro N., Quattrone A., et al. A role for platelets and thrombin in the juvenile stroke of two siblings with defective thrombin-adsorbing capacity of fibrin(ogen) Arterioscler. Thromb. J. Vasc. Biol. 1991;11:785–796. doi: 10.1161/01.ATV.11.4.785. PubMed DOI

Kotlín R., Reicheltová Z., Sobotková A., Suttnar J., Salaj P., Pospíšilová D., Smejkal P., Chrastinová L., Dyr J.E. Three cases of abnormal fibrinogens: Sumperk (Bbeta His67Leu), Unicov (Bbeta Gly414Ser), and Brno (gammaArg275His) Thromb. Haemost. 2008;100:1199–1200. PubMed

Kotlin R., Reicheltova Z., Suttnar J., Salaj P., Hrachovinova I., Riedel T., Maly M., Oravec M., Kvasnicka J., Dyr J.E. Two novel fibrinogen variants in the C-terminus of the Bbeta-chain: Fibrinogen Rokycany and fibrinogen Znojmo. J. Thromb. Thrombolysis. 2010;30:311–318. doi: 10.1007/s11239-010-0505-1. PubMed DOI

Duga S., Asselta R., Santagostino E., Zeinali S., Simonic T., Malcovati M., Mannucci P.M., Tenchini M.L. Missense mutations in the human β fibrinogen gene cause congenital afibrinogenemia by impairing fibrinogen secretion. Blood. 2000;95:1336–1341. doi: 10.1182/blood.V95.4.1336.004k16_1336_1341. PubMed DOI

Hanss M., Ffrench P., Vinciguerra C., Bertrands M.A., De Mazancourt P. Four cases of hypofibrinogenemia associated with four novel mutations. J. Thromb. Haemost. 2005;3:2347–2349. doi: 10.1111/j.1538-7836.2005.01580.x. PubMed DOI

Aung N.N., Kennedy H., Faed J.M., Brennan S.O. Novel heterozygous Bbeta (c.1311T>A) mutation (Fibrinogen St Kilda) associated with recurrent pregnancy loss. Pathology. 2015;47:583–585. doi: 10.1097/PAT.0000000000000307. PubMed DOI

Zhang J.Z., Redman C.M. Identification of B beta chain domains involved in human fibrinogen assembly. J. Biol. Chem. 1992;267:21727–21732. doi: 10.1016/S0021-9258(19)36672-4. PubMed DOI

Simurda T., Vilar R., Zolkova J., Ceznerova E., Kolkova Z., Loderer D., Neerman-Arbez M., Casini A., Brunclikova M., Skornova I., et al. A novel nonsense mutation in fgb (C.1421g>a; p.trp474ter) in the beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype. Biomedicines. 2020;8:605. doi: 10.3390/biomedicines8120605. PubMed DOI PMC

Carr M.E., Gabriel D.A., McDonagh J. Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem. J. 1986;239:513–516. doi: 10.1042/bj2390513. PubMed DOI PMC

Nair C.H., Shah G.A., Dhall D.P. Effect of temperature, pH and ionic strength and composition on fibrin network structure and its development. Thromb. Res. 1986;42:809–816. doi: 10.1016/0049-3848(86)90117-9. PubMed DOI

Weisel J.W., Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: Clot structure and assembly are kinetically controlled. Biophys. J. 1992;63:111–128. doi: 10.1016/S0006-3495(92)81594-1. PubMed DOI PMC

Wolberg A.S. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21:131–142. doi: 10.1016/j.blre.2006.11.001. PubMed DOI

Gabriel D.A., Muga K., Boothroyd E.M. The effect of fibrin structure on fibrinolysis. J. Biol. Chem. 1992;267:24259–24263. doi: 10.1016/S0021-9258(18)35759-4. PubMed DOI

Torbet J. Fibrin assembly in human plasma and fibrinogen/albumin mixtures. Biochemistry. 1986;25:5309–5314. doi: 10.1021/bi00366a048. PubMed DOI

Cai H., Liang M., Yang J., Zhang X. Congenital hypofibrinogenemia in pregnancy: A report of 11 cases. Blood Coagul. Fibrinolysis. 2018;29:155–159. doi: 10.1097/MBC.0000000000000676. PubMed DOI PMC

Sammaritano L.R. Antiphospholipid syndrome. Best Pract. Res. Clin. Rheumatol. 2020;34 doi: 10.1016/j.berh.2019.101463. PubMed DOI

Mullin J.L., Gorkun O.V., Lord S.T. Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism. Biochemistry. 2000;39:9843–9849. doi: 10.1021/bi000045c. PubMed DOI

Lord S.T., Strickland E., Jayjock E. Strategy for recombinant multichain protein synthesis: Fibrinogen B beta-chain variants as thrombin substrates. Biochemistry. 1996;35:2342–2348. doi: 10.1021/bi952353u. PubMed DOI

Kamijo T., Nagata K., Taira C., Higuchi Y., Arai S., Okumura N. Fibrin monomers derived from thrombogenic dysfibrinogenemia, Naples-type variant (BβAla68Thr), showed almost entirely normal polymerization. Thromb. Res. 2018;172:1–3. doi: 10.1016/j.thromres.2018.10.004. PubMed DOI

Brennan S.O., Roncolato F. Novel fibrinogen (B β401Gly→Val) presents as dys- or hypodysfibrinogenaemia due to alterations in sialic acid content. Thromb. Haemost. 2011;106:551–553. doi: 10.1160/TH11-05-0287. PubMed DOI

De Vries J.J., Snoek C.J.M., Rijken D.C., De Maat M.P.M. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis: A systematic review. Arterioscler. Thromb. Vasc. Biol. 2019;40:554–569. doi: 10.1161/ATVBAHA.119.313626. PubMed DOI PMC

Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957;17:237–246. doi: 10.1159/000205234. PubMed DOI

Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler A.D. The Human Genome Browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC

Brennan S.O., Hammonds B., George P.M. Aberrant hepatic processing causes removal of activation peptide and primary polymerisation site from fibrinogen Canterbury (A alpha 20 Val –> Asp) J. Clin. Investig. 1995;96:2854–2858. doi: 10.1172/JCI118356. PubMed DOI PMC

Suttnar J., Dyr J.E., Fořtová H., Pristach J. Determination of fibrinonopeptides by high resolution liquid chromotagraphy. Biochem. Clin. Bohemoslov. 1989;18:17–25.

Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinforma. 2016;54:5–6. doi: 10.1002/cpbi.3. PubMed DOI PMC

Kollman J.M., Pandi L., Sawaya M.R., Riley M., Doolittle R.F. Crystal structure of human fibrinogen. Biochemistry. 2009;48:3877–3886. doi: 10.1021/bi802205g. PubMed DOI

Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993;26:283–291. doi: 10.1107/S0021889892009944. DOI

Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30:S162–S173. doi: 10.1002/elps.200900140. PubMed DOI

Kabsch W., Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...