Loading of cell cultures with cholesterol-dextran particles as a new functional test for Niemann-Pick type C disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35088900
DOI
10.1002/jimd.12481
Knihovny.cz E-zdroje
- Klíčová slova
- Niemann-Pick type C disease, cholesterol, cholesterol trafficking, cholesterol-dextran particles, cholesteryl ester, loading test,
- MeSH
- buněčné kultury MeSH
- cholesterol metabolismus MeSH
- dextrany metabolismus MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mladiství MeSH
- Niemannova-Pickova nemoc typu C * diagnóza genetika metabolismus MeSH
- protein NPC1 genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- dextrany MeSH
- protein NPC1 MeSH
Deuterium-labeled cholesterol-dextran particles (d4-CholDex), prepared by co-precipitation, were internalized by cultured human skin fibroblasts and HEK293 cells. Subcellular particles from d4-CholDex-treated HEK293 cells were fractionated on iodixanol gradients. More than 60% of d4-cholesterol (d4-UC) in the gradient co-fractionated with lysosomal markers and NPC1. This and formation of d4-cholesteryl esters (d4-CE) in the cells suggests that d4-CholDex is lysosomally processed. In accordance with these findings, we observed an increase in lysosomal cholesterol content by fluorescence microscopy in CholDex-loaded cells. Fibroblast cultures including 13 NPC1-deficient, four heterozygous and six control lines were treated with d4-CholDex at final d4-UC concentration of 0.05 mg/ml (127.98 μmol/L) for 3 h and chased for 48 h in medium without d4-CholDex. Concentrations of d4-UC and d4-CE in harvested cells were measured by tandem mass spectrometry (MS/MS). d4-UC/d4-CE ratios were elevated in NP-C lines compared to controls (n = 6, mean = 4.36, range = 1.89-8.91), with the highest ratios in severe NP-C1 phenotypes and the lowest in adolescent/adult type patients. There were overlaps between NP-C1 forms: early infantile (n = 1, mean = 48.6), late infantile (n = 4, mean = 36.3, range = 20.6-54.0), juvenile (n = 5, mean = 24.7, range = 13.4-38.3), adolescent/adult (n = 3, mean = 14.5, range = 11.7-19.8). The ratios in NP-C1 heterozygotes were mildly elevated (n = 4, mean = 16.4, range = 14.9-17.4) and comparable to patients with adolescent/adult NP-C1. The test can be useful in evaluation of suspected NP-C patients with inconclusive results of biomarker or molecular tests. Its advantages include standardized preparation of particles with longer shelf life at 4 °C, quantitative results, and no requirement for radioactive chemicals.
Zobrazit více v PubMed
Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16. doi:10.1186/1750-1172-5-16
Vanier MT. Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res. 1999;24:481-489. doi:10.1023/A:1022575511354
Heybrock S, Kanerva K, Meng Y, et al. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat Commun. 2019;10:3521. doi:10.1038/s41467-019-11425-0
Li J, Pfeffer SR. Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. Elife. 2016;5:e21635. doi:10.7554/eLife.21635
Vanier MT, Latour P. Laboratory diagnosis of Niemann-Pick disease type C: the filipin staining test. Methods Cell Biol. 2015;126:357-375. doi:10.1016/bs.mcb.2014.10.028
Tängemo C, Weber D, Theiss S, Mengel E, Runz H. Niemann-Pick type C disease: characterizing lipid levels in patients with variant lysosomal cholesterol storage. J Lipid Res. 2011;52:813-825. doi:10.1194/jlr.P013524
Vanier MT, Wenger DA, Comly ME, Rousson R, Brady RO, Pentchev PG. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification: a collaborative study on 70 patients. Clin Genet. 1988;33:331-348. doi:10.1111/j.1399-0004.1988.tb03460.x
Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 2010;584:2731-2739. doi:10.1016/j.febslet.2010.04.047
Geberhiwot T, Moro A, Dardis A, et al. Consensus clinical management guidelines for Niemann-Pick disease type C. Orphanet J Rare Dis. 2018;13:50. doi:10.1186/s13023-018-0785-7
Vanier MT, Gissen P, Bauer P, et al. Diagnostic tests for Niemann-Pick disease type C (NP-C): a critical review. Mol Genet Metab. 2016;118:244-254. doi:10.1016/j.ymgme.2016.06.004
Diettrich O, Mills K, Johnson AW, Hasilik A, Winchester BG. Application of magnetic chromatography to the isolation of lysosomes from fibroblasts of patients with lysosomal storage disorders. FEBS Lett. 1998;441:369-372. doi:10.1016/S0014-5793(98)01578-6
Chao Y, Karmali PP, Simberg D. Role of carbohydrate receptors in the macrophage uptake of dextran-coated iron oxide nanoparticles. Nano-Biotechnology for Biomedical and Diagnostic Research. Springer; 2012:115-123. doi:10.1007/978-94-007-2555-3_11
Preobrazhenskaya ME, Minakova AL, Rosenfeld EL. Studies of the dextranase activity of pig-spleen acid α-D-glucosidase. Carbohydr Res. 1974;38:267-277. doi:10.1016/S0008-6215(00)82357-5
Vaculikova E, Grunwaldova V, Kral V, Dohnal J, Jampilek J. Primary investigation of the preparation of nanoparticles by precipitation. Molecules. 2012;17:11067-11078. doi:10.3390/molecules170911067
Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972;48:422-427. doi:10.1016/0003-2697(72)90094-2
Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta BBA. 2006;1761:121-128. doi:10.1016/j.bbalip.2005.12.007
Musalkova D, Majer F, Kuchar L, et al. Transcript, protein, metabolite and cellular studies in skin fibroblasts demonstrate variable pathogenic impacts of NPC1 mutations. Orphanet J Rare Dis. 2020;15:85. doi:10.1186/s13023-020-01360-5
Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest. 2002;110:905-911. doi:10.1172/JCI16452
Harrison KD, Miao RQ, Fernandez-Hernándo C, Suárez Y, Dávalos A, Sessa WC. Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab. 2009;10:208-218. doi:10.1016/j.cmet.2009.07.003
Christensen EI, Maunsbach AB. Dextran is resistant to lysosomal digestion in kidney tubules. Virchows Arch B. 1981;37:49-59. doi:10.1007/BF02892554
Axmann M, Strobl WM, Plochberger B, Stangl H. Cholesterol transfer at the plasma membrane. Atherosclerosis. 2019;290:111-117. doi:10.1016/j.atherosclerosis.2019.09.022
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125-129. doi:10.1038/nature17664
Park EJ, Grabińska KA, Guan Z, et al. Mutation of Nogo-B receptor, a subunit of cis-Prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 2014;20:448-457. doi:10.1016/j.cmet.2014.06.016