-
Something wrong with this record ?
Responsive Hydrogel Binding Matrix for Dual Signal Amplification in Fluorescence Affinity Biosensors and Peptide Microarrays
S. Hageneder, V. Jungbluth, R. Soldo, C. Petri, M. Pertiller, M. Kreivi, A. Weinhäusel, U. Jonas, J. Dostalek
Language English Country United States
Document type Journal Article
- MeSH
- Acrylic Resins chemistry MeSH
- Biosensing Techniques methods MeSH
- Fluorescence MeSH
- Hydrogels chemistry metabolism MeSH
- Immunoglobulin G analysis immunology MeSH
- Epstein-Barr Virus Infections diagnosis immunology metabolism virology MeSH
- Humans MeSH
- Peptide Fragments immunology metabolism MeSH
- Polymers chemistry MeSH
- Epstein-Barr Virus Nuclear Antigens immunology MeSH
- Herpesvirus 4, Human immunology isolation & purification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein-Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.
FZU Institute of Physics Czech Academy of Sciences Na Slovance 2 Prague 182 21 Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025568
- 003
- CZ-PrNML
- 005
- 20211026133706.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acsami.1c05950 $2 doi
- 035 __
- $a (PubMed)34081862
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hageneder, Simone $u Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
- 245 10
- $a Responsive Hydrogel Binding Matrix for Dual Signal Amplification in Fluorescence Affinity Biosensors and Peptide Microarrays / $c S. Hageneder, V. Jungbluth, R. Soldo, C. Petri, M. Pertiller, M. Kreivi, A. Weinhäusel, U. Jonas, J. Dostalek
- 520 9_
- $a A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein-Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.
- 650 _2
- $a akrylové pryskyřice $x chemie $7 D000180
- 650 _2
- $a biosenzitivní techniky $x metody $7 D015374
- 650 _2
- $a infekce virem Epsteina-Barrové $x diagnóza $x imunologie $x metabolismus $x virologie $7 D020031
- 650 _2
- $a virus Epsteinův-Barrové - jaderné antigeny $x imunologie $7 D019309
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a virus Epsteinův-Barrové $x imunologie $x izolace a purifikace $7 D004854
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydrogely $x chemie $x metabolismus $7 D020100
- 650 _2
- $a imunoglobulin G $x analýza $x imunologie $7 D007074
- 650 _2
- $a peptidové fragmenty $x imunologie $x metabolismus $7 D010446
- 650 _2
- $a polymery $x chemie $7 D011108
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Jungbluth, Vanessa $u Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
- 700 1_
- $a Soldo, Regina $u Molecular Diagnostics, Health & Environment, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- 700 1_
- $a Petri, Christian $u Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen 57076, Germany
- 700 1_
- $a Pertiller, Matthias $u Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
- 700 1_
- $a Kreivi, Marjut $u Ginolis Ltd, Automaatiotie 1, Oulunsalo 90460, Finland
- 700 1_
- $a Weinhäusel, Andreas $u Molecular Diagnostics, Health & Environment, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- 700 1_
- $a Jonas, Ulrich $u Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen 57076, Germany
- 700 1_
- $a Dostalek, Jakub $u Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria $u FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
- 773 0_
- $w MED00179503 $t ACS applied materials & interfaces $x 1944-8252 $g Roč. 13, č. 23 (2021), s. 27645-27655
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34081862 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133712 $b ABA008
- 999 __
- $a ok $b bmc $g 1714564 $s 1146075
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 13 $c 23 $d 27645-27655 $e 20210603 $i 1944-8252 $m ACS applied materials & interfaces $n ACS Appl Mater Interfaces $x MED00179503
- LZP __
- $a Pubmed-20211013