-
Je něco špatně v tomto záznamu ?
Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy
C. Sandoval-Acuña, N. Torrealba, V. Tomkova, SB. Jadhav, K. Blazkova, L. Merta, S. Lettlova, MK. Adamcová, D. Rosel, J. Brábek, J. Neuzil, J. Stursa, L. Werner, J. Truksa
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1941 do Před 1 rokem
Freely Accessible Science Journals
od 1941 do Před 1 rokem
Open Access Digital Library
od 1941-01-01
Open Access Digital Library
od 1941-01-01
- MeSH
- buněčná smrt účinky léků MeSH
- buňky PC-3 MeSH
- chelátory železa aplikace a dávkování MeSH
- deferoxamin aplikace a dávkování MeSH
- hem metabolismus MeSH
- karcinogeneze účinky léků MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- mitochondrie účinky léků metabolismus MeSH
- mitofagie účinky léků MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- tumor burden účinky léků MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
Faculty of Sciences BIOCEV Research Center Charles University Vestec Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
School of Medical Science Griffith University Southport Queensland Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025773
- 003
- CZ-PrNML
- 005
- 20220119144446.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1158/0008-5472.CAN-20-1628 $2 doi
- 035 __
- $a (PubMed)33685989
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sandoval-Acuña, Cristian $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 245 10
- $a Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy / $c C. Sandoval-Acuña, N. Torrealba, V. Tomkova, SB. Jadhav, K. Blazkova, L. Merta, S. Lettlova, MK. Adamcová, D. Rosel, J. Brábek, J. Neuzil, J. Stursa, L. Werner, J. Truksa
- 520 9_
- $a Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a karcinogeneze $x účinky léků $7 D063646
- 650 _2
- $a buněčná smrt $x účinky léků $7 D016923
- 650 _2
- $a pohyb buněk $x účinky léků $7 D002465
- 650 _2
- $a proliferace buněk $x účinky léků $7 D049109
- 650 _2
- $a deferoxamin $x aplikace a dávkování $7 D003676
- 650 _2
- $a hem $x metabolismus $7 D006418
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a železo $x metabolismus $7 D007501
- 650 _2
- $a chelátory železa $x aplikace a dávkování $7 D007502
- 650 _2
- $a MFC-7 buňky $7 D061986
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední BALB C $7 D008807
- 650 _2
- $a mitochondrie $x účinky léků $x metabolismus $7 D008928
- 650 _2
- $a mitofagie $x účinky léků $7 D063306
- 650 _2
- $a nádory $x farmakoterapie $x metabolismus $x patologie $7 D009369
- 650 _2
- $a buňky PC-3 $7 D000078722
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a signální transdukce $x účinky léků $7 D015398
- 650 _2
- $a tumor burden $x účinky léků $7 D047368
- 650 _2
- $a xenogenní modely - testy protinádorové aktivity $7 D023041
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Torrealba, Natalia $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Tomkova, Veronika $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Jadhav, Sukanya B $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Blazkova, Kristyna $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Merta, Ladislav $u Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
- 700 1_
- $a Lettlova, Sandra $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Adamcová, Miroslava K $u Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Rosel, Daniel $u Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
- 700 1_
- $a Brábek, Jan, $u Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic $d 1973- $7 xx0268678
- 700 1_
- $a Neuzil, Jiri $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic $u School of Medical Science, Griffith University, Southport, Queensland, Australia
- 700 1_
- $a Stursa, Jan $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Werner, Lukas $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
- 700 1_
- $a Truksa, Jaroslav $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic. jaroslav.truksa@ibt.cas.cz
- 773 0_
- $w MED00009437 $t Cancer research $x 1538-7445 $g Roč. 81, č. 9 (2021), s. 2289-2303
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33685989 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20220119144442 $b ABA008
- 999 __
- $a ok $b bmc $g 1714696 $s 1146280
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 81 $c 9 $d 2289-2303 $e 20210308 $i 1538-7445 $m Cancer research $n Cancer Res $x MED00009437
- LZP __
- $a Pubmed-20211013