-
Something wrong with this record ?
A Label-Free Diamond Microfluidic DNA Sensor Based on Active Nitrogen-Vacancy Center Charge State Control
M. Krečmarová, M. Gulka, T. Vandenryt, J. Hrubý, L. Fekete, P. Hubík, A. Taylor, V. Mortet, R. Thoelen, E. Bourgeois, M. Nesládek
Language English Country United States
Document type Journal Article
- MeSH
- Biosensing Techniques instrumentation MeSH
- Diamond chemistry MeSH
- DNA analysis MeSH
- Nitrogen chemistry MeSH
- Electrochemistry MeSH
- Lab-On-A-Chip Devices * MeSH
- Polyethyleneimine chemistry MeSH
- Publication type
- Journal Article MeSH
We propose a label-free biosensor concept based on the charge state manipulation of nitrogen-vacancy (NV) quantum color centers in diamond, combined with an electrochemical microfluidic flow cell sensor, constructed on boron-doped diamond. This device can be set at a defined electrochemical potential, locking onto the particular chemical reaction, whilst the NV center provides the sensing function. The NV charge state occupation is initially prepared by applying a bias voltage on a gate electrode and then subsequently altered by exposure to detected charged molecules. We demonstrate the functionality of the device by performing label-free optical detection of DNA molecules. In this experiment, a monolayer of strongly cationic charged polymer polyethylenimine is used to shift the charge state of near surface NV centers from negatively charged NV- to neutral NV0 or dark positively charged NV+. Immobilization of negatively charged DNA molecules on the surface of the sensor restores the NV centers charge state back to the negatively charged NV-, which is detected using confocal photoluminescence microscopy. Biochemical reactions in the microfluidic channel are characterized by electrochemical impedance spectroscopy. The use of the developed electrochemical device can also be extended to nuclear magnetic resonance spin sensing.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025827
- 003
- CZ-PrNML
- 005
- 20211026133449.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acsami.1c01118 $2 doi
- 035 __
- $a (PubMed)33849273
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Krečmarová, Marie $u Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic
- 245 12
- $a A Label-Free Diamond Microfluidic DNA Sensor Based on Active Nitrogen-Vacancy Center Charge State Control / $c M. Krečmarová, M. Gulka, T. Vandenryt, J. Hrubý, L. Fekete, P. Hubík, A. Taylor, V. Mortet, R. Thoelen, E. Bourgeois, M. Nesládek
- 520 9_
- $a We propose a label-free biosensor concept based on the charge state manipulation of nitrogen-vacancy (NV) quantum color centers in diamond, combined with an electrochemical microfluidic flow cell sensor, constructed on boron-doped diamond. This device can be set at a defined electrochemical potential, locking onto the particular chemical reaction, whilst the NV center provides the sensing function. The NV charge state occupation is initially prepared by applying a bias voltage on a gate electrode and then subsequently altered by exposure to detected charged molecules. We demonstrate the functionality of the device by performing label-free optical detection of DNA molecules. In this experiment, a monolayer of strongly cationic charged polymer polyethylenimine is used to shift the charge state of near surface NV centers from negatively charged NV- to neutral NV0 or dark positively charged NV+. Immobilization of negatively charged DNA molecules on the surface of the sensor restores the NV centers charge state back to the negatively charged NV-, which is detected using confocal photoluminescence microscopy. Biochemical reactions in the microfluidic channel are characterized by electrochemical impedance spectroscopy. The use of the developed electrochemical device can also be extended to nuclear magnetic resonance spin sensing.
- 650 _2
- $a biosenzitivní techniky $x přístrojové vybavení $7 D015374
- 650 _2
- $a DNA $x analýza $7 D004247
- 650 _2
- $a diamant $x chemie $7 D018130
- 650 _2
- $a elektrochemie $7 D004563
- 650 12
- $a laboratoř na čipu $7 D056656
- 650 _2
- $a dusík $x chemie $7 D009584
- 650 _2
- $a polyethylenimin $x chemie $7 D011094
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Gulka, Michal $u Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic $u Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czechia
- 700 1_
- $a Vandenryt, Thijs $u Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium $u IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- 700 1_
- $a Hrubý, Jaroslav $u Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- 700 1_
- $a Fekete, Ladislav $u FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
- 700 1_
- $a Hubík, Pavel $u FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
- 700 1_
- $a Taylor, Andrew $u FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
- 700 1_
- $a Mortet, Vincent $u Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic $u FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
- 700 1_
- $a Thoelen, Ronald $u Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium $u IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- 700 1_
- $a Bourgeois, Emilie $u Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium $u IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- 700 1_
- $a Nesládek, Miloš $u Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic $u IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- 773 0_
- $w MED00179503 $t ACS applied materials & interfaces $x 1944-8252 $g Roč. 13, č. 16 (2021), s. 18500-18510
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33849273 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133455 $b ABA008
- 999 __
- $a ok $b bmc $g 1714745 $s 1146334
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 13 $c 16 $d 18500-18510 $e 20210413 $i 1944-8252 $m ACS applied materials & interfaces $n ACS Appl Mater Interfaces $x MED00179503
- LZP __
- $a Pubmed-20211013