• Je něco špatně v tomto záznamu ?

The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells

KA. Mayer, U. Smole, C. Zhu, S. Derdak, AA. Minervina, M. Salnikova, N. Witzeneder, A. Christamentl, N. Boucheron, P. Waidhofer-Söllner, M. Trauner, G. Hoermann, KG. Schmetterer, IZ. Mamedov, M. Bilban, W. Ellmeier, WF. Pickl, GA. Gualdoni, GJ. Zlabinger

. 2021 ; 35 (4) : e21217. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025896

The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025896
003      
CZ-PrNML
005      
20211026133410.0
007      
ta
008      
211013s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1096/fj.202001763RR $2 doi
035    __
$a (PubMed)33715236
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mayer, Katharina A $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
245    14
$a The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells / $c KA. Mayer, U. Smole, C. Zhu, S. Derdak, AA. Minervina, M. Salnikova, N. Witzeneder, A. Christamentl, N. Boucheron, P. Waidhofer-Söllner, M. Trauner, G. Hoermann, KG. Schmetterer, IZ. Mamedov, M. Bilban, W. Ellmeier, WF. Pickl, GA. Gualdoni, GJ. Zlabinger
520    9_
$a The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.
650    _2
$a fyziologická adaptace $7 D000222
650    _2
$a adenylátkinasa $x genetika $x metabolismus $7 D000263
650    _2
$a převzatá imunita $7 D019264
650    _2
$a zvířata $7 D000818
650    _2
$a CD4-pozitivní T-lymfocyty $7 D015496
650    _2
$a kolitida $x imunologie $7 D003092
650    _2
$a DNA vazebné proteiny $x genetika $x metabolismus $7 D004268
650    _2
$a regulace genové exprese enzymů $7 D015971
650    _2
$a aktivace lymfocytů $7 D008213
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
650    _2
$a T-lymfocyty pomocné-indukující $x fyziologie $7 D006377
650    _2
$a regulační T-lymfocyty $x fyziologie $7 D050378
650    _2
$a Th1 buňky $x fyziologie $7 D018417
650    _2
$a buňky Th17 $x fyziologie $7 D058504
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Smole, Ursula $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
700    1_
$a Zhu, Ci $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria $u Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
700    1_
$a Derdak, Sophia $u Core Facilities, Medical University of Vienna, Vienna, Austria
700    1_
$a Minervina, Anastasia A $u Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
700    1_
$a Salnikova, Maria $u Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
700    1_
$a Witzeneder, Nadine $u Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria $u Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
700    1_
$a Christamentl, Anna $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
700    1_
$a Boucheron, Nicole $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
700    1_
$a Waidhofer-Söllner, Petra $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
700    1_
$a Trauner, Michael $u Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
700    1_
$a Hoermann, Gregor $u Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria $u MLL Munich Leukemia Laboratory, Munich, Germany
700    1_
$a Schmetterer, Klaus G $u Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
700    1_
$a Mamedov, Ilgar Z $u Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic
700    1_
$a Bilban, Martin $u Core Facilities, Medical University of Vienna, Vienna, Austria $u Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
700    1_
$a Ellmeier, Wilfried $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
700    1_
$a Pickl, Winfried F $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
700    1_
$a Gualdoni, Guido A $u Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
700    1_
$a Zlabinger, Gerhard J $u Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
773    0_
$w MED00001782 $t FASEB journal : official publication of the Federation of American Societies for Experimental Biology $x 1530-6860 $g Roč. 35, č. 4 (2021), s. e21217
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33715236 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133416 $b ABA008
999    __
$a ok $b bmc $g 1714799 $s 1146403
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 35 $c 4 $d e21217 $e - $i 1530-6860 $m The FASEB journal $n FASEB J $x MED00001782
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...