Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Molecular Modeling Studies on the Multistep Reactivation Process of Organophosphate-Inhibited Acetylcholinesterase and Butyrylcholinesterase

J. Jończyk, J. Kukułowicz, K. Łątka, B. Malawska, YS. Jung, K. Musilek, M. Bajda

. 2021 ; 11 (2) : . [pub] 20210127

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21026170

Grantová podpora
V4-Korea 3/2018 Narodowe Centrum Badań i Rozwoju
18-01734S Grantová Agentura České Republiky
VT2019-2021 University of Hradec Kralove, Faculty of Science

Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21026170
003      
CZ-PrNML
005      
20211026133141.0
007      
ta
008      
211013s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/biom11020169 $2 doi
035    __
$a (PubMed)33513955
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Jończyk, Jakub $u Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
245    10
$a Molecular Modeling Studies on the Multistep Reactivation Process of Organophosphate-Inhibited Acetylcholinesterase and Butyrylcholinesterase / $c J. Jończyk, J. Kukułowicz, K. Łątka, B. Malawska, YS. Jung, K. Musilek, M. Bajda
520    9_
$a Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.
650    _2
$a acetylcholinesterasa $x metabolismus $7 D000110
650    _2
$a zvířata $7 D000818
650    _2
$a butyrylcholinesterasa $x metabolismus $7 D002091
650    _2
$a katalytická doména $7 D020134
650    _2
$a cholinesterasové inhibitory $x farmakologie $7 D002800
650    _2
$a reaktivátory cholinesterasy $x farmakologie $7 D002801
650    _2
$a shluková analýza $7 D016000
650    _2
$a aktivace enzymů $7 D004789
650    _2
$a lidé $7 D006801
650    _2
$a ligandy $7 D008024
650    _2
$a myši $7 D051379
650    _2
$a molekulární modely $7 D008958
650    12
$a simulace molekulového dockingu $7 D062105
650    _2
$a organofosfáty $x chemie $7 D010755
650    _2
$a oximy $x chemie $7 D010091
650    _2
$a fosfor $x chemie $7 D010758
650    _2
$a vazba proteinů $7 D011485
650    _2
$a proteosyntéza $7 D014176
650    _2
$a konformace proteinů $7 D011487
650    _2
$a kvantová teorie $7 D011789
650    _2
$a sarin $x chemie $7 D012524
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kukułowicz, Jędrzej $u Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
700    1_
$a Łątka, Kamil $u Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
700    1_
$a Malawska, Barbara $u Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
700    1_
$a Jung, Young-Sik $u Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea $u Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 34113, Korea
700    1_
$a Musilek, Kamil $u Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic $u Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
700    1_
$a Bajda, Marek $u Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
773    0_
$w MED00188737 $t Biomolecules $x 2218-273X $g Roč. 11, č. 2 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33513955 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133147 $b ABA008
999    __
$a ok $b bmc $g 1715011 $s 1146677
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 11 $c 2 $e 20210127 $i 2218-273X $m Biomolecules $n Biomolecules $x MED00188737
GRA    __
$a V4-Korea 3/2018 $p Narodowe Centrum Badań i Rozwoju
GRA    __
$a 18-01734S $p Grantová Agentura České Republiky
GRA    __
$a VT2019-2021 $p University of Hradec Kralove, Faculty of Science
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...