-
Je něco špatně v tomto záznamu ?
Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock
P. Patakova, J. Kolek, K. Jureckova, B. Branska, K. Sedlar, M. Vasylkivska, I. Provaznik
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2012-03-01
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2012-01-01
Medline Complete (EBSCOhost)
od 2014-04-01
Health & Medicine (ProQuest)
od 2012-03-01
Wiley-Blackwell Open Access Titles
od 2012
ROAD: Directory of Open Access Scholarly Resources
od 2012
PubMed
33319506
DOI
10.1002/mbo3.1146
Knihovny.cz E-zdroje
- MeSH
- biologický transport genetika MeSH
- bioreaktory mikrobiologie MeSH
- buněčná membrána metabolismus MeSH
- butanoly toxicita MeSH
- Clostridium beijerinckii účinky léků genetika metabolismus MeSH
- fyziologický stres genetika MeSH
- glukosa metabolismus MeSH
- glykolýza genetika fyziologie MeSH
- mastné kyseliny metabolismus MeSH
- plasmalogeny biosyntéza MeSH
- proteiny teplotního šoku metabolismus MeSH
- quorum sensing genetika MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone-butanol-ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum-sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Biotechnology University of Chemistry and Technology Prague Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026287
- 003
- CZ-PrNML
- 005
- 20211026133028.0
- 007
- ta
- 008
- 211013s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mbo3.1146 $2 doi
- 035 __
- $a (PubMed)33319506
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Patakova, Petra $u Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- 245 10
- $a Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock / $c P. Patakova, J. Kolek, K. Jureckova, B. Branska, K. Sedlar, M. Vasylkivska, I. Provaznik
- 520 9_
- $a The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone-butanol-ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum-sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.
- 650 _2
- $a biologický transport $x genetika $7 D001692
- 650 _2
- $a bioreaktory $x mikrobiologie $7 D019149
- 650 _2
- $a butanoly $x toxicita $7 D000440
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a Clostridium beijerinckii $x účinky léků $x genetika $x metabolismus $7 D046970
- 650 _2
- $a mastné kyseliny $x metabolismus $7 D005227
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a glukosa $x metabolismus $7 D005947
- 650 _2
- $a glykolýza $x genetika $x fyziologie $7 D006019
- 650 _2
- $a proteiny teplotního šoku $x metabolismus $7 D006360
- 650 _2
- $a plasmalogeny $x biosyntéza $7 D010955
- 650 _2
- $a quorum sensing $x genetika $7 D053038
- 650 _2
- $a fyziologický stres $x genetika $7 D013312
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kolek, Jan $u Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- 700 1_
- $a Jureckova, Katerina $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Branska, Barbora $u Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- 700 1_
- $a Sedlar, Karel $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Vasylkivska, Maryna $u Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- 700 1_
- $a Provaznik, Ivo $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
- 773 0_
- $w MED00184561 $t MicrobiologyOpen $x 2045-8827 $g Roč. 10, č. 1 (2021), s. e1146
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33319506 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133034 $b ABA008
- 999 __
- $a ok $b bmc $g 1715107 $s 1146794
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 10 $c 1 $d e1146 $e 20201214 $i 2045-8827 $m MicrobiologyOpen $n Microbiologyopen $x MED00184561
- LZP __
- $a Pubmed-20211013