-
Je něco špatně v tomto záznamu ?
Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism
K. Smolková, E. Mikó, T. Kovács, A. Leguina-Ruzzi, A. Sipos, P. Bai
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy
PubMed
31989830
DOI
10.1089/ars.2020.8024
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- energetický metabolismus * MeSH
- epigeneze genetická MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- hormony metabolismus MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- mikro RNA genetika MeSH
- mutace MeSH
- nádorové biomarkery MeSH
- nádorové kmenové buňky metabolismus MeSH
- nádory etiologie metabolismus patologie MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- signální dráha UPR MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Department of Medical Chemistry Faculty of Medicine University of Debrecen Debrecen Hungary
Faculty of Medicine Research Center for Molecular Medicine University of Debrecen Debrecen Hungary
MTA DE Lendület Laboratory of Cellular Metabolism Debrecen Hungary
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026432
- 003
- CZ-PrNML
- 005
- 20211026132917.0
- 007
- ta
- 008
- 211013s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1089/ars.2020.8024 $2 doi
- 035 __
- $a (PubMed)31989830
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Smolková, Katarína $u Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
- 245 10
- $a Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism / $c K. Smolková, E. Mikó, T. Kovács, A. Leguina-Ruzzi, A. Sipos, P. Bai
- 520 9_
- $a Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antioxidancia $x metabolismus $7 D000975
- 650 _2
- $a nádorové biomarkery $7 D014408
- 650 12
- $a energetický metabolismus $7 D004734
- 650 _2
- $a epigeneze genetická $7 D044127
- 650 _2
- $a regulace genové exprese u nádorů $x účinky léků $7 D015972
- 650 _2
- $a hormony $x metabolismus $7 D006728
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a metabolické sítě a dráhy $7 D053858
- 650 _2
- $a mikro RNA $x genetika $7 D035683
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a faktor 2 související s NF-E2 $x genetika $x metabolismus $7 D051267
- 650 _2
- $a nádory $x etiologie $x metabolismus $x patologie $7 D009369
- 650 _2
- $a nádorové kmenové buňky $x metabolismus $7 D014411
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a oxidační stres $7 D018384
- 650 _2
- $a signální transdukce $x účinky léků $7 D015398
- 650 _2
- $a signální dráha UPR $7 D056811
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Mikó, Edit $u Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary $u MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- 700 1_
- $a Kovács, Tünde $u Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- 700 1_
- $a Leguina-Ruzzi, Alberto $u Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
- 700 1_
- $a Sipos, Adrienn $u Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- 700 1_
- $a Bai, Péter $u Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary $u MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary $u Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- 773 0_
- $w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 33, č. 13 (2020), s. 966-997
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31989830 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026132923 $b ABA008
- 999 __
- $a ok $b bmc $g 1715220 $s 1146939
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 33 $c 13 $d 966-997 $e 20200318 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
- LZP __
- $a Pubmed-20211013