Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Automatic substantia nigra segmentation in neuromelanin-sensitive MRI by deep neural network in patients with prodromal and manifest synucleinopathy

R. Krupička, S. Mareček, C. Malá, M. Lang, O. Klempíř, T. Duspivová, R. Široká, T. Jarošíková, J. Keller, K. Šonka, E. Růžička, P. Dušek

. 2019 ; 68 (Suppl 4) : S453-S458. [pub] 20191230

Language English Country Czech Republic

Document type Clinical Trial, Journal Article

Grant support
NV15-25602A MZ0 CEP Register

Neuromelanin (NM) is a black pigment located in the brain in substantia nigra pars compacta (SN) and locus coeruleus. Its loss is directly connected to the loss of nerve cells in this part of the brain, which plays a role in Parkinson's Disease. Magnetic resonance imaging (MRI) is an ideal tool to monitor the amount of NM in the brain in vivo. The aim of the study was the development of tools and methodology for the quantification of NM in a special neuromelanin-sensitive MRI images. The first approach was done by creating regions of interest, corresponding to the anatomical position of SN based on an anatomical atlas and determining signal intensity threshold. By linking the anatomical and signal intensity information, we were able to segment the SN. As a second approach, the neural network U-Net was used for the segmentation of SN. Subsequently, the volume characterizing the amount of NM in the SN region was calculated. To verify the method and the assumptions, data available from various patient groups were correlated. The main benefit of this approach is the observer-independency of quantification and facilitation of the image processing process and subsequent quantification compared to the manual approach. It is ideal for automatic processing many image sets in one batch.

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc21028205
003      
CZ-PrNML
005      
20220325111332.0
007      
ta
008      
211105s2019 xr a f 000 0|eng||
009      
AR
024    7_
$a 10.33549/physiolres.934380 $2 doi
035    __
$a (PubMed)32118476
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Krupička, Radim, $d 1981- $7 xx0209817 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
245    10
$a Automatic substantia nigra segmentation in neuromelanin-sensitive MRI by deep neural network in patients with prodromal and manifest synucleinopathy / $c R. Krupička, S. Mareček, C. Malá, M. Lang, O. Klempíř, T. Duspivová, R. Široká, T. Jarošíková, J. Keller, K. Šonka, E. Růžička, P. Dušek
504    __
$a Literatura
520    9_
$a Neuromelanin (NM) is a black pigment located in the brain in substantia nigra pars compacta (SN) and locus coeruleus. Its loss is directly connected to the loss of nerve cells in this part of the brain, which plays a role in Parkinson's Disease. Magnetic resonance imaging (MRI) is an ideal tool to monitor the amount of NM in the brain in vivo. The aim of the study was the development of tools and methodology for the quantification of NM in a special neuromelanin-sensitive MRI images. The first approach was done by creating regions of interest, corresponding to the anatomical position of SN based on an anatomical atlas and determining signal intensity threshold. By linking the anatomical and signal intensity information, we were able to segment the SN. As a second approach, the neural network U-Net was used for the segmentation of SN. Subsequently, the volume characterizing the amount of NM in the SN region was calculated. To verify the method and the assumptions, data available from various patient groups were correlated. The main benefit of this approach is the observer-independency of quantification and facilitation of the image processing process and subsequent quantification compared to the manual approach. It is ideal for automatic processing many image sets in one batch.
650    _2
$a senioři $7 D000368
650    _2
$a studie případů a kontrol $7 D016022
650    12
$a deep learning $7 D000077321
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a melaniny $x analýza $7 D008543
650    _2
$a lidé středního věku $7 D008875
650    _2
$a prodromální symptomy $7 D062706
650    _2
$a substantia nigra $x diagnostické zobrazování $7 D013378
650    _2
$a synukleinopatie $x diagnostické zobrazování $7 D000080874
655    _2
$a klinické zkoušky $7 D016430
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mareček, Stanislav $7 xx0267627 $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Malá, Christiane $7 xx0267631 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
700    1_
$a Lang, Martin $7 xx0267632 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
700    1_
$a Klempíř, Ondřej $7 xx0241721 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
700    1_
$a Duspivová, Tereza $7 xx0267639 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
700    1_
$a Široká, Romana $7 xx0094270 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
700    1_
$a Jarošíková, Taťána, $d 1956- $7 xx0240283 $u Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
700    1_
$a Keller, Jiří, $d 1981- $7 xx0145264 $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $u Department of Radiodiagnostics, Na Homolce Hospital, Prague, Czech Republic
700    1_
$a Šonka, Karel, $d 1957- $7 jn99240001644 $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Růžička, Evžen, $d 1957- $7 jo20000074065 $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Dušek, Petr $7 jo2013795390 $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
773    0_
$w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 68, Suppl 4 (2019), s. S453-S458
773    0_
$t Contemporary Czech and Slovak research on medical biophysics $g (2019), s. S453-S458 $w MED00208906
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32118476 $y Pubmed
910    __
$a ABA008 $b A 4120 $c 266 $y p $z 0
990    __
$a 20211105 $b ABA008
991    __
$a 20220325111325 $b ABA008
999    __
$a ok $b bmc $g 1735525 $s 1148750
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 68 $c Suppl 4 $d S453-S458 $e 20191230 $i 1802-9973 $m Physiological research $n Physiol. Res. (Print) $x MED00003824
BMC    __
$a 2019 $d S453-S458 $m Contemporary Czech and Slovak research on medical biophysics $x MED00208906
GRA    __
$a NV15-25602A $p MZ0
LZP    __
$b NLK118 $a Pubmed-20211105

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...