Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study

AM. Manakhov, NA. Sitnikova, AR. Tsygankova, AY. Alekseev, LS. Adamenko, E. Permyakova, VS. Baidyshev, ZI. Popov, L. Blahová, M. Eliáš, L. Zajíčková, AO. Solovieva

. 2021 ; 11 (12) : . [pub] 20211208

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22001095

Grantová podpora
20-52-26020 Russian Foundation for Basic Research
21-12132J Czech Science Foundation

Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22001095
003      
CZ-PrNML
005      
20220112153500.0
007      
ta
008      
220107s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/membranes11120965 $2 doi
035    __
$a (PubMed)34940466
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Manakhov, Anton M $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
245    10
$a Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study / $c AM. Manakhov, NA. Sitnikova, AR. Tsygankova, AY. Alekseev, LS. Adamenko, E. Permyakova, VS. Baidyshev, ZI. Popov, L. Blahová, M. Eliáš, L. Zajíčková, AO. Solovieva
520    9_
$a Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Sitnikova, Natalya A $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
700    1_
$a Tsygankova, Alphiya R $u Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
700    1_
$a Alekseev, Alexander Yu $u Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova St., 630060 Novosibirsk, Russia $u Research Institute of Applied Ecology, Dagestan State University, Dahadaeva 21, 367000 Makhachkala, Russia
700    1_
$a Adamenko, Lyubov S $u Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova St., 630060 Novosibirsk, Russia
700    1_
$a Permyakova, Elizaveta $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia $u Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky Prospekt 4, 119071 Moscow, Russia
700    1_
$a Baidyshev, Victor S $u Department of Computer Engineering and Automated Systems Software, Katanov Khakas State University, Pr. Lenin, 90, 655017 Abakan, Russia
700    1_
$a Popov, Zakhar I $u Laboratory of Acoustic Microscopy, Emanuel Institute of Biochemical Physics RAS, Kosygina 4, 119334 Moscow, Russia
700    1_
$a Blahová, Lucie $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic
700    1_
$a Eliáš, Marek $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic
700    1_
$a Zajíčková, Lenka $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic $u Department Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
700    1_
$a Solovieva, Anastasiya O $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
773    0_
$w MED00207608 $t Membranes $x 2077-0375 $g Roč. 11, č. 12 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34940466 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20220107 $b ABA008
991    __
$a 20220112153456 $b ABA008
999    __
$a ind $b bmc $g 1745361 $s 1152242
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 11 $c 12 $e 20211208 $i 2077-0375 $m Membranes $n Membranes (Basel) $x MED00207608
GRA    __
$a 20-52-26020 $p Russian Foundation for Basic Research
GRA    __
$a 21-12132J $p Czech Science Foundation
LZP    __
$a Pubmed-20220107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...