-
Je něco špatně v tomto záznamu ?
Plant LHC-like proteins show robust folding and static non-photochemical quenching
P. Skotnicová, H. Staleva-Musto, V. Kuznetsova, D. Bína, MM. Konert, S. Lu, T. Polívka, R. Sobotka
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
854126
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
19-28323X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
- MeSH
- chlorofyl metabolismus MeSH
- karotenoidy metabolismus MeSH
- multimerizace proteinu MeSH
- mutace MeSH
- přenos energie MeSH
- proteiny chloroplastové chemie genetika metabolismus MeSH
- proteiny huseníčku chemie genetika metabolismus MeSH
- sbalování proteinů MeSH
- Synechocystis genetika metabolismus MeSH
- vazba proteinů MeSH
- xanthofyly metabolismus MeSH
- zeaxanthiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Třeboň Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003168
- 003
- CZ-PrNML
- 005
- 20220127150618.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-021-27155-1 $2 doi
- 035 __
- $a (PubMed)34824207
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Skotnicová, Petra $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
- 245 10
- $a Plant LHC-like proteins show robust folding and static non-photochemical quenching / $c P. Skotnicová, H. Staleva-Musto, V. Kuznetsova, D. Bína, MM. Konert, S. Lu, T. Polívka, R. Sobotka
- 520 9_
- $a Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.
- 650 _2
- $a proteiny huseníčku $x chemie $x genetika $x metabolismus $7 D029681
- 650 _2
- $a karotenoidy $x metabolismus $7 D002338
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a proteiny chloroplastové $x chemie $x genetika $x metabolismus $7 D060365
- 650 _2
- $a přenos energie $7 D004735
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a sbalování proteinů $7 D017510
- 650 _2
- $a multimerizace proteinu $7 D055503
- 650 _2
- $a Synechocystis $x genetika $x metabolismus $7 D046939
- 650 _2
- $a xanthofyly $x metabolismus $7 D024341
- 650 _2
- $a zeaxanthiny $x genetika $x metabolismus $7 D065146
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Staleva-Musto, Hristina $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 700 1_
- $a Kuznetsova, Valentyna $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 700 1_
- $a Bína, David $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic $u Biology Centre, Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- 700 1_
- $a Konert, Minna M $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
- 700 1_
- $a Lu, Shan $u School of Life Sciences, Nanjing University, Nanjing, China
- 700 1_
- $a Polívka, Tomáš $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. tpolivka@jcu.cz $u Biology Centre, Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic. tpolivka@jcu.cz
- 700 1_
- $a Sobotka, Roman $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic. sobotka@alga.cz
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 12, č. 1 (2021), s. 6890
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34824207 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150614 $b ABA008
- 999 __
- $a ok $b bmc $g 1750817 $s 1154317
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 12 $c 1 $d 6890 $e 20211125 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- GRA __
- $a 854126 $p EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- GRA __
- $a 19-28323X $p Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- LZP __
- $a Pubmed-20220113