-
Je něco špatně v tomto záznamu ?
Novelty detection-based approach for Alzheimer's disease and mild cognitive impairment diagnosis from EEG
M. Cejnek, O. Vysata, M. Valis, I. Bukovsky
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
FN HK 00179906
Ministerstvo Zdravotnictví Ceské Republiky
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2003-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- Alzheimerova nemoc * diagnóza MeSH
- elektroencefalografie MeSH
- kognitivní dysfunkce * diagnóza MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Alzheimer's disease is diagnosed via means of daily activity assessment. The EEG recording evaluation is a supporting tool that can assist the practitioner to recognize the illness, especially in the early stages. This paper presents a new approach for detecting Alzheimer's disease and potentially mild cognitive impairment according to the measured EEG records. The proposed method evaluates the amount of novelty in the EEG signal as a feature for EEG record classification. The novelty is measured from the parameters of EEG signal adaptive filtration. A linear neuron with gradient descent adaptation was used as the filter in predictive settings. The extracted feature (novelty measure) is later classified to obtain Alzheimer's disease diagnosis. The proposed approach was cross-validated on a dataset containing EEG records of 59 patients suffering from Alzheimer's disease; seven patients with mild cognitive impairment (MCI) and 102 controls. The results of cross-validation yield 90.73% specificity and 89.51% sensitivity. The proposed method of feature extraction from EEG is completely new and can be used with any classifier for the diagnosis of Alzheimer's disease from EEG records.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003344
- 003
- CZ-PrNML
- 005
- 20220127150323.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11517-021-02427-6 $2 doi
- 035 __
- $a (PubMed)34535856
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cejnek, Matous $u Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka Street 4, 16607, Prague 6, Czech Republic. matousc@gmail.com
- 245 10
- $a Novelty detection-based approach for Alzheimer's disease and mild cognitive impairment diagnosis from EEG / $c M. Cejnek, O. Vysata, M. Valis, I. Bukovsky
- 520 9_
- $a Alzheimer's disease is diagnosed via means of daily activity assessment. The EEG recording evaluation is a supporting tool that can assist the practitioner to recognize the illness, especially in the early stages. This paper presents a new approach for detecting Alzheimer's disease and potentially mild cognitive impairment according to the measured EEG records. The proposed method evaluates the amount of novelty in the EEG signal as a feature for EEG record classification. The novelty is measured from the parameters of EEG signal adaptive filtration. A linear neuron with gradient descent adaptation was used as the filter in predictive settings. The extracted feature (novelty measure) is later classified to obtain Alzheimer's disease diagnosis. The proposed approach was cross-validated on a dataset containing EEG records of 59 patients suffering from Alzheimer's disease; seven patients with mild cognitive impairment (MCI) and 102 controls. The results of cross-validation yield 90.73% specificity and 89.51% sensitivity. The proposed method of feature extraction from EEG is completely new and can be used with any classifier for the diagnosis of Alzheimer's disease from EEG records.
- 650 12
- $a Alzheimerova nemoc $x diagnóza $7 D000544
- 650 12
- $a kognitivní dysfunkce $x diagnóza $7 D060825
- 650 _2
- $a elektroencefalografie $7 D004569
- 650 _2
- $a lidé $7 D006801
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Vysata, Oldrich $u Department of Neurology, Faculty of Medicine in University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- 700 1_
- $a Valis, Martin $u Department of Neurology, Faculty of Medicine in University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- 700 1_
- $a Bukovsky, Ivo $u Department of Computer Science, Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
- 773 0_
- $w MED00003217 $t Medical & biological engineering & computing $x 1741-0444 $g Roč. 59, č. 11-12 (2021), s. 2287-2296
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34535856 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150320 $b ABA008
- 999 __
- $a ok $b bmc $g 1750959 $s 1154493
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 59 $c 11-12 $d 2287-2296 $e 20210918 $i 1741-0444 $m Medical & biological engineering & computing $n Med Biol Eng Comput $x MED00003217
- GRA __
- $a FN HK 00179906 $p Ministerstvo Zdravotnictví Ceské Republiky
- LZP __
- $a Pubmed-20220113