Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Novelty detection-based approach for Alzheimer's disease and mild cognitive impairment diagnosis from EEG

M. Cejnek, O. Vysata, M. Valis, I. Bukovsky

. 2021 ; 59 (11-12) : 2287-2296. [pub] 20210918

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003344

Grantová podpora
FN HK 00179906 Ministerstvo Zdravotnictví Ceské Republiky

E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2003-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

Alzheimer's disease is diagnosed via means of daily activity assessment. The EEG recording evaluation is a supporting tool that can assist the practitioner to recognize the illness, especially in the early stages. This paper presents a new approach for detecting Alzheimer's disease and potentially mild cognitive impairment according to the measured EEG records. The proposed method evaluates the amount of novelty in the EEG signal as a feature for EEG record classification. The novelty is measured from the parameters of EEG signal adaptive filtration. A linear neuron with gradient descent adaptation was used as the filter in predictive settings. The extracted feature (novelty measure) is later classified to obtain Alzheimer's disease diagnosis. The proposed approach was cross-validated on a dataset containing EEG records of 59 patients suffering from Alzheimer's disease; seven patients with mild cognitive impairment (MCI) and 102 controls. The results of cross-validation yield 90.73% specificity and 89.51% sensitivity. The proposed method of feature extraction from EEG is completely new and can be used with any classifier for the diagnosis of Alzheimer's disease from EEG records.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003344
003      
CZ-PrNML
005      
20220127150323.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11517-021-02427-6 $2 doi
035    __
$a (PubMed)34535856
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cejnek, Matous $u Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka Street 4, 16607, Prague 6, Czech Republic. matousc@gmail.com
245    10
$a Novelty detection-based approach for Alzheimer's disease and mild cognitive impairment diagnosis from EEG / $c M. Cejnek, O. Vysata, M. Valis, I. Bukovsky
520    9_
$a Alzheimer's disease is diagnosed via means of daily activity assessment. The EEG recording evaluation is a supporting tool that can assist the practitioner to recognize the illness, especially in the early stages. This paper presents a new approach for detecting Alzheimer's disease and potentially mild cognitive impairment according to the measured EEG records. The proposed method evaluates the amount of novelty in the EEG signal as a feature for EEG record classification. The novelty is measured from the parameters of EEG signal adaptive filtration. A linear neuron with gradient descent adaptation was used as the filter in predictive settings. The extracted feature (novelty measure) is later classified to obtain Alzheimer's disease diagnosis. The proposed approach was cross-validated on a dataset containing EEG records of 59 patients suffering from Alzheimer's disease; seven patients with mild cognitive impairment (MCI) and 102 controls. The results of cross-validation yield 90.73% specificity and 89.51% sensitivity. The proposed method of feature extraction from EEG is completely new and can be used with any classifier for the diagnosis of Alzheimer's disease from EEG records.
650    12
$a Alzheimerova nemoc $x diagnóza $7 D000544
650    12
$a kognitivní dysfunkce $x diagnóza $7 D060825
650    _2
$a elektroencefalografie $7 D004569
650    _2
$a lidé $7 D006801
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vysata, Oldrich $u Department of Neurology, Faculty of Medicine in University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
700    1_
$a Valis, Martin $u Department of Neurology, Faculty of Medicine in University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
700    1_
$a Bukovsky, Ivo $u Department of Computer Science, Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
773    0_
$w MED00003217 $t Medical & biological engineering & computing $x 1741-0444 $g Roč. 59, č. 11-12 (2021), s. 2287-2296
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34535856 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150320 $b ABA008
999    __
$a ok $b bmc $g 1750959 $s 1154493
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 59 $c 11-12 $d 2287-2296 $e 20210918 $i 1741-0444 $m Medical & biological engineering & computing $n Med Biol Eng Comput $x MED00003217
GRA    __
$a FN HK 00179906 $p Ministerstvo Zdravotnictví Ceské Republiky
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...