• Je něco špatně v tomto záznamu ?

Effective Automatic Method Selection for Nonlinear Regression Modeling

J. Kalina, A. Neoral, P. Vidnerová

. 2021 ; 31 (10) : 2150020. [pub] 20210329

Jazyk angličtina Země Singapur

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003588

Metalearning, an important part of artificial intelligence, represents a promising approach for the task of automatic selection of appropriate methods or algorithms. This paper is interested in recommending a suitable estimator for nonlinear regression modeling, particularly in recommending either the standard nonlinear least squares estimator or one of such available alternative estimators, which is highly robust with respect to the presence of outliers in the data. The authors hold the opinion that theoretical considerations will never be able to formulate such recommendations for the nonlinear regression context. Instead, metalearning is explored here as an original approach suitable for this task. In this paper, four different approaches for automatic method selection for nonlinear regression are proposed and computations over a training database of 643 real publicly available datasets are performed. Particularly, while the metalearning results may be harmed by the imbalanced number of groups, an effective approach yields much improved results, performing a novel combination of supervised feature selection by random forest and oversampling by synthetic minority oversampling technique (SMOTE). As a by-product, the computations bring arguments in favor of the very recent nonlinear least weighted squares estimator, which turns out to outperform other (and much more renowned) estimators in a quite large percentage of datasets.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003588
003      
CZ-PrNML
005      
20220127150059.0
007      
ta
008      
220113s2021 si f 000 0|eng||
009      
AR
024    7_
$a 10.1142/S0129065721500209 $2 doi
035    __
$a (PubMed)33787471
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a si
100    1_
$a Kalina, Jan $u The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic $u Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague 8, Czech Republic
245    10
$a Effective Automatic Method Selection for Nonlinear Regression Modeling / $c J. Kalina, A. Neoral, P. Vidnerová
520    9_
$a Metalearning, an important part of artificial intelligence, represents a promising approach for the task of automatic selection of appropriate methods or algorithms. This paper is interested in recommending a suitable estimator for nonlinear regression modeling, particularly in recommending either the standard nonlinear least squares estimator or one of such available alternative estimators, which is highly robust with respect to the presence of outliers in the data. The authors hold the opinion that theoretical considerations will never be able to formulate such recommendations for the nonlinear regression context. Instead, metalearning is explored here as an original approach suitable for this task. In this paper, four different approaches for automatic method selection for nonlinear regression are proposed and computations over a training database of 643 real publicly available datasets are performed. Particularly, while the metalearning results may be harmed by the imbalanced number of groups, an effective approach yields much improved results, performing a novel combination of supervised feature selection by random forest and oversampling by synthetic minority oversampling technique (SMOTE). As a by-product, the computations bring arguments in favor of the very recent nonlinear least weighted squares estimator, which turns out to outperform other (and much more renowned) estimators in a quite large percentage of datasets.
650    12
$a algoritmy $7 D000465
650    12
$a umělá inteligence $7 D001185
650    _2
$a metoda nejmenších čtverců $7 D016018
655    _2
$a časopisecké články $7 D016428
700    1_
$a Neoral, Aleš $u The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic
700    1_
$a Vidnerová, Petra $u The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic
773    0_
$w MED00002342 $t International journal of neural systems $x 1793-6462 $g Roč. 31, č. 10 (2021), s. 2150020
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33787471 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150055 $b ABA008
999    __
$a ok $b bmc $g 1751142 $s 1154737
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 31 $c 10 $d 2150020 $e 20210329 $i 1793-6462 $m International journal of neural systems $n Int J Neural Syst $x MED00002342
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...