Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids

J. Frankovsky, B. Keresztesová, J. Bellová, N. Kunová, N. Čanigová, K. Hanakova, JA. Bauer, G. Ondrovičová, V. Lukáčová, B. Siváková, Z. Zdrahal, V. Pevala, K. Procházková, J. Nosek, P. Baráth, E. Kutejova, L. Tomaska

. 2021 ; 297 (4) : 101155. [pub] 20210901

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003596
003      
CZ-PrNML
005      
20250408110922.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jbc.2021.101155 $2 doi
035    __
$a (PubMed)34480900
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Frankovsky, Jan $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
245    14
$a The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids / $c J. Frankovsky, B. Keresztesová, J. Bellová, N. Kunová, N. Čanigová, K. Hanakova, JA. Bauer, G. Ondrovičová, V. Lukáčová, B. Siváková, Z. Zdrahal, V. Pevala, K. Procházková, J. Nosek, P. Baráth, E. Kutejova, L. Tomaska
520    9_
$a Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.
650    _2
$a DNA vazebné proteiny $x genetika $x metabolismus $7 D004268
650    _2
$a mitochondriální proteiny $x metabolismus $7 D024101
650    _2
$a proteasa La $x genetika $x metabolismus $7 D049070
650    12
$a posttranslační úpravy proteinů $7 D011499
650    12
$a proteomika $7 D040901
650    _2
$a Saccharomyces cerevisiae $x metabolismus $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
650    _2
$a kyselina jantarová $x metabolismus $7 D019802
650    _2
$a transkripční faktory $x genetika $x metabolismus $7 D014157
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Keresztesová, Barbora $u Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Bellová, J. $u Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia $7 xx0330867
700    1_
$a Kunová, Nina $u Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Čanigová, Nikola $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
700    1_
$a Hanakova, Katerina $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Bauer, Jacob A $u Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Ondrovičová, Gabriela $u Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Lukáčová, Veronika $u Medirex Group Academy, Trnava, Slovakia
700    1_
$a Siváková, Barbara $u Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Zdrahal, Zbynek $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Pevala, Vladimír $u Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
700    1_
$a Procházková, Katarína $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
700    1_
$a Nosek, Jozef $u Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
700    1_
$a Baráth, Peter $u Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Trnava, Slovakia. Electronic address: chempeto@savba.sk
700    1_
$a Kutejova, Eva $u Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia. Electronic address: eva.kutejova@savba.sk
700    1_
$a Tomaska, Lubomir $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia. Electronic address: lubomir.tomaska@uniba.sk
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 297, č. 4 (2021), s. 101155
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34480900 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20250408110918 $b ABA008
999    __
$a ok $b bmc $g 1751150 $s 1154745
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 297 $c 4 $d 101155 $e 20210901 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
LZP    __
$a Pubmed-20220113

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...