Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility

O. Mihola, V. Landa, F. Pratto, K. Brick, T. Kobets, F. Kusari, S. Gasic, F. Smagulova, C. Grey, P. Flachs, V. Gergelits, K. Tresnak, J. Silhavy, P. Mlejnek, RD. Camerini-Otero, M. Pravenec, GV. Petukhova, Z. Trachtulec

. 2021 ; 19 (1) : 86. [pub] 20210428

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004432

Grantová podpora
14-20728S Grantová Agentura České Republiky
16-06548S Grantová Agentura České Republiky
19-06272S Grantová Agentura České Republiky
RVO 68378050 Akademie Věd České Republiky
LM2018126 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_046/0015861 Ministerstvo Školství, Mládeže a Tělovýchovy
1-FY13-506 Myotonic Dystrophy Foundation
1R01GM084104 Foundation for the National Institutes of Health
LQ1604 Ministry of Education, Youth and Sports of the Czech Republic
LM2015040 Ministry of Education, Youth and Sports of the Czech Republic
LM2018126 Ministry of Education, Youth and Sports of the Czech Republic
LM2015042 Ministry of Education, Youth and Sports of the Czech Republic
LM2015085 Ministry of Education, Youth and Sports of the Czech Republic
LM2015062 Ministry of Education, Youth and Sports of the Czech Republic
CZ.1.05/1.1.00/02.0109 BIOCEV European Regional Development Fund
CZ.1.05/2.1.00/19.0395 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund
CZ.02.1.01/0.0/0.0/18_046/0015861 European Regional Development Fund

BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004432
003      
CZ-PrNML
005      
20220127145239.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12915-021-01017-0 $2 doi
035    __
$a (PubMed)33910563
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Mihola, Ondrej $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
245    10
$a Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility / $c O. Mihola, V. Landa, F. Pratto, K. Brick, T. Kobets, F. Kusari, S. Gasic, F. Smagulova, C. Grey, P. Flachs, V. Gergelits, K. Tresnak, J. Silhavy, P. Mlejnek, RD. Camerini-Otero, M. Pravenec, GV. Petukhova, Z. Trachtulec
520    9_
$a BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
650    _2
$a zvířata $7 D000818
650    _2
$a chromatin $7 D002843
650    _2
$a dvouřetězcové zlomy DNA $7 D053903
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a fertilita $x genetika $7 D005298
650    _2
$a histonlysin-N-methyltransferasa $x genetika $7 D011495
650    _2
$a mužské pohlaví $7 D008297
650    12
$a meióza $x genetika $7 D008540
650    _2
$a myši $7 D051379
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani inbrední SHR $7 D011918
650    _2
$a spermatogeneze $x genetika $7 D013091
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Landa, Vladimir $u Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Pratto, Florencia $u National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
700    1_
$a Brick, Kevin $u National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
700    1_
$a Kobets, Tatyana $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
700    1_
$a Kusari, Fitore $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
700    1_
$a Gasic, Srdjan $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
700    1_
$a Smagulova, Fatima $u Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA $u Present address: Inserm U1085 IRSET, 35042, Rennes, France
700    1_
$a Grey, Corinne $u Institut de Génétique Humaine, CNRS UMR 9002, 34396, Montpellier, France
700    1_
$a Flachs, Petr $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic $u Present address: Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
700    1_
$a Gergelits, Vaclav $u Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
700    1_
$a Tresnak, Karel $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
700    1_
$a Silhavy, Jan $u Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Mlejnek, Petr $u Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Camerini-Otero, R Daniel $u National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
700    1_
$a Pravenec, Michal $u Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Petukhova, Galina V $u Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
700    1_
$a Trachtulec, Zdenek $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic. Zdenek.Trachtulec@img.cas.cz
773    0_
$w MED00008168 $t BMC biology $x 1741-7007 $g Roč. 19, č. 1 (2021), s. 86
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33910563 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145235 $b ABA008
999    __
$a ok $b bmc $g 1751795 $s 1155581
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 19 $c 1 $d 86 $e 20210428 $i 1741-7007 $m BMC biology $n BMC Biol $x MED00008168
GRA    __
$a 14-20728S $p Grantová Agentura České Republiky
GRA    __
$a 16-06548S $p Grantová Agentura České Republiky
GRA    __
$a 19-06272S $p Grantová Agentura České Republiky
GRA    __
$a RVO 68378050 $p Akademie Věd České Republiky
GRA    __
$a LM2018126 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a CZ.02.1.01/0.0/0.0/18_046/0015861 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a 1-FY13-506 $p Myotonic Dystrophy Foundation
GRA    __
$a 1R01GM084104 $p Foundation for the National Institutes of Health
GRA    __
$a LQ1604 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a LM2015040 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a LM2018126 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a LM2015042 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a LM2015085 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a LM2015062 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a CZ.1.05/1.1.00/02.0109 BIOCEV $p European Regional Development Fund
GRA    __
$a CZ.1.05/2.1.00/19.0395 $p European Regional Development Fund
GRA    __
$a CZ.02.1.01/0.0/0.0/16_013/0001775 $p European Regional Development Fund
GRA    __
$a CZ.02.1.01/0.0/0.0/18_046/0015861 $p European Regional Development Fund
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...