-
Je něco špatně v tomto záznamu ?
Cognitive Phenotypes of Older Adults with Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment: The Czech Brain Aging Study
DJ. Jester, R. Andel, K. Cechová, J. Laczó, O. Lerch, H. Marková, T. Nikolai, M. Vyhnálek, J. Hort
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2001-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2001-01-01 do Před 1 rokem
Psychology Database (ProQuest)
od 2001-01-01 do Před 1 rokem
- MeSH
- fenotyp MeSH
- kognice MeSH
- kognitivní dysfunkce * komplikace MeSH
- lidé MeSH
- mozek MeSH
- neuropsychologické testy MeSH
- senioři MeSH
- stárnutí MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
OBJECTIVE: To compare cognitive phenotypes of participants with subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI), estimate progression to MCI/dementia by phenotype and assess classification error with machine learning. METHOD: Dataset consisted of 163 participants with SCD and 282 participants with aMCI from the Czech Brain Aging Study. Cognitive assessment included the Uniform Data Set battery and additional tests to ascertain executive function, language, immediate and delayed memory, visuospatial skills, and processing speed. Latent profile analyses were used to develop cognitive profiles, and Cox proportional hazards models were used to estimate risk of progression. Random forest machine learning algorithms reported cognitive phenotype classification error. RESULTS: Latent profile analysis identified three phenotypes for SCD, with one phenotype performing worse across all domains but not progressing more quickly to MCI/dementia after controlling for age, sex, and education. Three aMCI phenotypes were characterized by mild deficits, memory and language impairment (dysnomic aMCI), and severe multi-domain aMCI (i.e., deficits across all domains). A dose-response relationship between baseline level of impairment and subsequent risk of progression to dementia was evident for aMCI profiles after controlling for age, sex, and education. Machine learning more easily classified participants with aMCI in comparison to SCD (8% vs. 21% misclassified). CONCLUSIONS: Cognitive performance follows distinct patterns, especially within aMCI. The patterns map onto risk of progression to dementia.
International Clinical Research Center St Anne's University Hospital Brno Brno 656 91 Czech Republic
School of Aging Studies University of South Florida Tampa FL33612 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004493
- 003
- CZ-PrNML
- 005
- 20250709093332.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1017/S1355617720001046 $2 doi
- 035 __
- $a (PubMed)33138890
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Jester, Dylan J $u School of Aging Studies, University of South Florida, Tampa, FL33612, USA
- 245 10
- $a Cognitive Phenotypes of Older Adults with Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment: The Czech Brain Aging Study / $c DJ. Jester, R. Andel, K. Cechová, J. Laczó, O. Lerch, H. Marková, T. Nikolai, M. Vyhnálek, J. Hort
- 520 9_
- $a OBJECTIVE: To compare cognitive phenotypes of participants with subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI), estimate progression to MCI/dementia by phenotype and assess classification error with machine learning. METHOD: Dataset consisted of 163 participants with SCD and 282 participants with aMCI from the Czech Brain Aging Study. Cognitive assessment included the Uniform Data Set battery and additional tests to ascertain executive function, language, immediate and delayed memory, visuospatial skills, and processing speed. Latent profile analyses were used to develop cognitive profiles, and Cox proportional hazards models were used to estimate risk of progression. Random forest machine learning algorithms reported cognitive phenotype classification error. RESULTS: Latent profile analysis identified three phenotypes for SCD, with one phenotype performing worse across all domains but not progressing more quickly to MCI/dementia after controlling for age, sex, and education. Three aMCI phenotypes were characterized by mild deficits, memory and language impairment (dysnomic aMCI), and severe multi-domain aMCI (i.e., deficits across all domains). A dose-response relationship between baseline level of impairment and subsequent risk of progression to dementia was evident for aMCI profiles after controlling for age, sex, and education. Machine learning more easily classified participants with aMCI in comparison to SCD (8% vs. 21% misclassified). CONCLUSIONS: Cognitive performance follows distinct patterns, especially within aMCI. The patterns map onto risk of progression to dementia.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a stárnutí $7 D000375
- 650 _2
- $a mozek $7 D001921
- 650 _2
- $a kognice $7 D003071
- 650 12
- $a kognitivní dysfunkce $x komplikace $7 D060825
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a neuropsychologické testy $7 D009483
- 650 _2
- $a fenotyp $7 D010641
- 651 _2
- $a Česká republika $7 D018153
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Andel, Ross $u School of Aging Studies, University of South Florida, Tampa, FL33612, USA $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 700 1_
- $a Cechová, Katerina $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 700 1_
- $a Laczó, Jan $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 700 1_
- $a Lerch, Ondřej $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic $7 xx0333546
- 700 1_
- $a Marková, Hana $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 700 1_
- $a Nikolai, Tomás $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 700 1_
- $a Vyhnálek, Martin $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 700 1_
- $a Hort, Jakub $u Department of Neurology, Memory Clinic, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, 150 06, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 656 91, Czech Republic
- 773 0_
- $w MED00184317 $t Journal of the International Neuropsychological Society. $x 1469-7661 $g Roč. 27, č. 4 (2021), s. 329-342
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33138890 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20250709093323 $b ABA008
- 999 __
- $a ok $b bmc $g 1751838 $s 1155642
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 27 $c 4 $d 329-342 $e 20201103 $i 1469-7661 $m Journal of the International Neuropsychological Society. $n J Int Neuropsychol Soc $x MED00184317
- LZP __
- $a Pubmed-20220113