-
Je něco špatně v tomto záznamu ?
The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity
S. Antonucci, M. Di Sante, F. Tonolo, L. Pontarollo, V. Scalcon, P. Alanova, R. Menabò, A. Carpi, A. Bindoli, MP. Rigobello, M. Giorgio, N. Kaludercic, F. Di Lisa
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32524823
DOI
10.1089/ars.2019.7929
Knihovny.cz E-zdroje
- MeSH
- doxorubicin farmakologie MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- krysa rodu rattus MeSH
- mitochondrie MeSH
- monoaminoxidasa metabolismus MeSH
- myši MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku analýza metabolismus MeSH
- srdeční komory účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aims: Doxorubicin cardiomyopathy is a lethal pathology characterized by oxidative stress, mitochondrial dysfunction, and contractile impairment, leading to cell death. Although extensive research has been done to understand the pathophysiology of doxorubicin cardiomyopathy, no effective treatments are available. We investigated whether monoamine oxidases (MAOs) could be involved in doxorubicin-derived oxidative stress, and in the consequent mitochondrial, cardiomyocyte, and cardiac dysfunction. Results: We used neonatal rat ventricular myocytes (NRVMs) and adult mouse ventricular myocytes (AMVMs). Doxorubicin alone (i.e., 0.5 μM doxorubicin) or in combination with H2O2 induced an increase in mitochondrial formation of reactive oxygen species (ROS), which was prevented by the pharmacological inhibition of MAOs in both NRVMs and AMVMs. The pharmacological approach was supported by the genetic ablation of MAO-A in NRVMs. In addition, doxorubicin-derived ROS caused lipid peroxidation and alterations in mitochondrial function (i.e., mitochondrial membrane potential, permeability transition, redox potential), mitochondrial morphology (i.e., mitochondrial distribution and perimeter), sarcomere organization, intracellular [Ca2+] homeostasis, and eventually cell death. All these dysfunctions were abolished by MAO inhibition. Of note, in vivo MAO inhibition prevented chamber dilation and cardiac dysfunction in doxorubicin-treated mice. Innovation and Conclusion: This study demonstrates that the severe oxidative stress induced by doxorubicin requires the involvement of MAOs, which modulate mitochondrial ROS generation. MAO inhibition provides evidence that mitochondrial ROS formation is causally linked to all disorders caused by doxorubicin in vitro and in vivo. Based upon these results, MAO inhibition represents a novel therapeutic approach for doxorubicin cardiomyopathy.
Department of Biomedical Sciences University of Padova Padova Italy
European Institute of Oncology Milan Italy
Institute for Physiology Czech Academy of Sciences Prague Czech Republic
Neuroscience Institute National Research Council of Italy Padova Italy
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004560
- 003
- CZ-PrNML
- 005
- 20220127145145.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1089/ars.2019.7929 $2 doi
- 035 __
- $a (PubMed)32524823
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Antonucci, Salvatore $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 245 14
- $a The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity / $c S. Antonucci, M. Di Sante, F. Tonolo, L. Pontarollo, V. Scalcon, P. Alanova, R. Menabò, A. Carpi, A. Bindoli, MP. Rigobello, M. Giorgio, N. Kaludercic, F. Di Lisa
- 520 9_
- $a Aims: Doxorubicin cardiomyopathy is a lethal pathology characterized by oxidative stress, mitochondrial dysfunction, and contractile impairment, leading to cell death. Although extensive research has been done to understand the pathophysiology of doxorubicin cardiomyopathy, no effective treatments are available. We investigated whether monoamine oxidases (MAOs) could be involved in doxorubicin-derived oxidative stress, and in the consequent mitochondrial, cardiomyocyte, and cardiac dysfunction. Results: We used neonatal rat ventricular myocytes (NRVMs) and adult mouse ventricular myocytes (AMVMs). Doxorubicin alone (i.e., 0.5 μM doxorubicin) or in combination with H2O2 induced an increase in mitochondrial formation of reactive oxygen species (ROS), which was prevented by the pharmacological inhibition of MAOs in both NRVMs and AMVMs. The pharmacological approach was supported by the genetic ablation of MAO-A in NRVMs. In addition, doxorubicin-derived ROS caused lipid peroxidation and alterations in mitochondrial function (i.e., mitochondrial membrane potential, permeability transition, redox potential), mitochondrial morphology (i.e., mitochondrial distribution and perimeter), sarcomere organization, intracellular [Ca2+] homeostasis, and eventually cell death. All these dysfunctions were abolished by MAO inhibition. Of note, in vivo MAO inhibition prevented chamber dilation and cardiac dysfunction in doxorubicin-treated mice. Innovation and Conclusion: This study demonstrates that the severe oxidative stress induced by doxorubicin requires the involvement of MAOs, which modulate mitochondrial ROS generation. MAO inhibition provides evidence that mitochondrial ROS formation is causally linked to all disorders caused by doxorubicin in vitro and in vivo. Based upon these results, MAO inhibition represents a novel therapeutic approach for doxorubicin cardiomyopathy.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a doxorubicin $x farmakologie $7 D004317
- 650 _2
- $a srdeční komory $x účinky léků $x metabolismus $7 D006352
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a mitochondrie $7 D008928
- 650 _2
- $a monoaminoxidasa $x metabolismus $7 D008995
- 650 _2
- $a kardiomyocyty $x účinky léků $x metabolismus $7 D032383
- 650 _2
- $a oxidační stres $x účinky léků $7 D018384
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a reaktivní formy kyslíku $x analýza $x metabolismus $7 D017382
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Di Sante, Moises $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 700 1_
- $a Tonolo, Federica $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 700 1_
- $a Pontarollo, Laura $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 700 1_
- $a Scalcon, Valeria $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 700 1_
- $a Alanova, Petra $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u Institute for Physiology, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Menabò, Roberta $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- 700 1_
- $a Carpi, Andrea $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 700 1_
- $a Bindoli, Alberto $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- 700 1_
- $a Rigobello, Maria Pia $u Department of Biomedical Sciences, University of Padova, Padova, Italy
- 700 1_
- $a Giorgio, Marco $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u European Institute of Oncology (IEO), Milan, Italy
- 700 1_
- $a Kaludercic, Nina $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- 700 1_
- $a Di Lisa, Fabio $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- 773 0_
- $w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 34, č. 7 (2021), s. 531-550
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32524823 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145142 $b ABA008
- 999 __
- $a ok $b bmc $g 1751878 $s 1155709
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 34 $c 7 $d 531-550 $e 20200707 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
- LZP __
- $a Pubmed-20220113