• Je něco špatně v tomto záznamu ?

The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity

S. Antonucci, M. Di Sante, F. Tonolo, L. Pontarollo, V. Scalcon, P. Alanova, R. Menabò, A. Carpi, A. Bindoli, MP. Rigobello, M. Giorgio, N. Kaludercic, F. Di Lisa

. 2021 ; 34 (7) : 531-550. [pub] 20200707

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004560

Aims: Doxorubicin cardiomyopathy is a lethal pathology characterized by oxidative stress, mitochondrial dysfunction, and contractile impairment, leading to cell death. Although extensive research has been done to understand the pathophysiology of doxorubicin cardiomyopathy, no effective treatments are available. We investigated whether monoamine oxidases (MAOs) could be involved in doxorubicin-derived oxidative stress, and in the consequent mitochondrial, cardiomyocyte, and cardiac dysfunction. Results: We used neonatal rat ventricular myocytes (NRVMs) and adult mouse ventricular myocytes (AMVMs). Doxorubicin alone (i.e., 0.5 μM doxorubicin) or in combination with H2O2 induced an increase in mitochondrial formation of reactive oxygen species (ROS), which was prevented by the pharmacological inhibition of MAOs in both NRVMs and AMVMs. The pharmacological approach was supported by the genetic ablation of MAO-A in NRVMs. In addition, doxorubicin-derived ROS caused lipid peroxidation and alterations in mitochondrial function (i.e., mitochondrial membrane potential, permeability transition, redox potential), mitochondrial morphology (i.e., mitochondrial distribution and perimeter), sarcomere organization, intracellular [Ca2+] homeostasis, and eventually cell death. All these dysfunctions were abolished by MAO inhibition. Of note, in vivo MAO inhibition prevented chamber dilation and cardiac dysfunction in doxorubicin-treated mice. Innovation and Conclusion: This study demonstrates that the severe oxidative stress induced by doxorubicin requires the involvement of MAOs, which modulate mitochondrial ROS generation. MAO inhibition provides evidence that mitochondrial ROS formation is causally linked to all disorders caused by doxorubicin in vitro and in vivo. Based upon these results, MAO inhibition represents a novel therapeutic approach for doxorubicin cardiomyopathy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004560
003      
CZ-PrNML
005      
20220127145145.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ars.2019.7929 $2 doi
035    __
$a (PubMed)32524823
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Antonucci, Salvatore $u Department of Biomedical Sciences, University of Padova, Padova, Italy
245    14
$a The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity / $c S. Antonucci, M. Di Sante, F. Tonolo, L. Pontarollo, V. Scalcon, P. Alanova, R. Menabò, A. Carpi, A. Bindoli, MP. Rigobello, M. Giorgio, N. Kaludercic, F. Di Lisa
520    9_
$a Aims: Doxorubicin cardiomyopathy is a lethal pathology characterized by oxidative stress, mitochondrial dysfunction, and contractile impairment, leading to cell death. Although extensive research has been done to understand the pathophysiology of doxorubicin cardiomyopathy, no effective treatments are available. We investigated whether monoamine oxidases (MAOs) could be involved in doxorubicin-derived oxidative stress, and in the consequent mitochondrial, cardiomyocyte, and cardiac dysfunction. Results: We used neonatal rat ventricular myocytes (NRVMs) and adult mouse ventricular myocytes (AMVMs). Doxorubicin alone (i.e., 0.5 μM doxorubicin) or in combination with H2O2 induced an increase in mitochondrial formation of reactive oxygen species (ROS), which was prevented by the pharmacological inhibition of MAOs in both NRVMs and AMVMs. The pharmacological approach was supported by the genetic ablation of MAO-A in NRVMs. In addition, doxorubicin-derived ROS caused lipid peroxidation and alterations in mitochondrial function (i.e., mitochondrial membrane potential, permeability transition, redox potential), mitochondrial morphology (i.e., mitochondrial distribution and perimeter), sarcomere organization, intracellular [Ca2+] homeostasis, and eventually cell death. All these dysfunctions were abolished by MAO inhibition. Of note, in vivo MAO inhibition prevented chamber dilation and cardiac dysfunction in doxorubicin-treated mice. Innovation and Conclusion: This study demonstrates that the severe oxidative stress induced by doxorubicin requires the involvement of MAOs, which modulate mitochondrial ROS generation. MAO inhibition provides evidence that mitochondrial ROS formation is causally linked to all disorders caused by doxorubicin in vitro and in vivo. Based upon these results, MAO inhibition represents a novel therapeutic approach for doxorubicin cardiomyopathy.
650    _2
$a zvířata $7 D000818
650    _2
$a doxorubicin $x farmakologie $7 D004317
650    _2
$a srdeční komory $x účinky léků $x metabolismus $7 D006352
650    _2
$a myši $7 D051379
650    _2
$a mitochondrie $7 D008928
650    _2
$a monoaminoxidasa $x metabolismus $7 D008995
650    _2
$a kardiomyocyty $x účinky léků $x metabolismus $7 D032383
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a reaktivní formy kyslíku $x analýza $x metabolismus $7 D017382
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Di Sante, Moises $u Department of Biomedical Sciences, University of Padova, Padova, Italy
700    1_
$a Tonolo, Federica $u Department of Biomedical Sciences, University of Padova, Padova, Italy
700    1_
$a Pontarollo, Laura $u Department of Biomedical Sciences, University of Padova, Padova, Italy
700    1_
$a Scalcon, Valeria $u Department of Biomedical Sciences, University of Padova, Padova, Italy
700    1_
$a Alanova, Petra $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u Institute for Physiology, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Menabò, Roberta $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
700    1_
$a Carpi, Andrea $u Department of Biomedical Sciences, University of Padova, Padova, Italy
700    1_
$a Bindoli, Alberto $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
700    1_
$a Rigobello, Maria Pia $u Department of Biomedical Sciences, University of Padova, Padova, Italy
700    1_
$a Giorgio, Marco $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u European Institute of Oncology (IEO), Milan, Italy
700    1_
$a Kaludercic, Nina $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
700    1_
$a Di Lisa, Fabio $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
773    0_
$w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 34, č. 7 (2021), s. 531-550
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32524823 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145142 $b ABA008
999    __
$a ok $b bmc $g 1751878 $s 1155709
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 34 $c 7 $d 531-550 $e 20200707 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...