Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas

AM. Manakhov, ES. Permyakova, NA. Sitnikova, AR. Tsygankova, AY. Alekseev, MV. Solomatina, VS. Baidyshev, ZI. Popov, L. Blahová, M. Eliáš, L. Zajíčková, AM. Kovalskii, AN. Sheveyko, PV. Kiryukhantsev-Korneev, DV. Shtansky, D. Nečas, AO. Solovieva

. 2022 ; 27 (4) : . [pub] 20220216

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22010986

Grantová podpora
20-52-26020 Russian Foundation for Basic Research
21-12132J Czech Science Foundation
LM2018110 MEYS CR
"Biomedical materials and bioengineering" Strategic Academic Leadership Program "Priority 2030" at NUST «MISiS»

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 μg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22010986
003      
CZ-PrNML
005      
20220506131021.0
007      
ta
008      
220425s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/molecules27041333 $2 doi
035    __
$a (PubMed)35209122
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Manakhov, Anton M $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia $1 https://orcid.org/0000000345171682
245    10
$a Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas / $c AM. Manakhov, ES. Permyakova, NA. Sitnikova, AR. Tsygankova, AY. Alekseev, MV. Solomatina, VS. Baidyshev, ZI. Popov, L. Blahová, M. Eliáš, L. Zajíčková, AM. Kovalskii, AN. Sheveyko, PV. Kiryukhantsev-Korneev, DV. Shtansky, D. Nečas, AO. Solovieva
520    9_
$a The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 μg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
650    _2
$a zvířata $7 D000818
650    _2
$a antivirové látky $x chemie $7 D000998
650    _2
$a COVID-19 $x prevence a kontrola $x přenos $7 D000086382
650    _2
$a Cercopithecus aethiops $7 D002522
650    _2
$a biokompatibilní potahované materiály $x chemie $7 D020099
650    _2
$a měď $x chemie $7 D003300
650    _2
$a zlato $x chemie $7 D006046
650    _2
$a lidé $7 D006801
650    _2
$a nanovlákna $x chemie $7 D057139
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a SARS-CoV-2 $x chemie $7 D000086402
650    _2
$a titan $x chemie $7 D014025
650    _2
$a Vero buňky $7 D014709
655    _2
$a časopisecké články $7 D016428
700    1_
$a Permyakova, Elizaveta S $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia $u Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky Prospekt 4, Moscow 119049, Russia $1 https://orcid.org/0000000325810803
700    1_
$a Sitnikova, Natalya A $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia
700    1_
$a Tsygankova, Alphiya R $u Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
700    1_
$a Alekseev, Alexander Y $u Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., Novosibirsk 630060, Russia $1 https://orcid.org/0000000300159305
700    1_
$a Solomatina, Maria V $u Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., Novosibirsk 630060, Russia
700    1_
$a Baidyshev, Victor S $u Department of Computer Engineering and Automated Systems Software, Katanov Khakas State University, Pr. Lenin 90, Abakan 655017, Russia
700    1_
$a Popov, Zakhar I $u Emanuel Institute of Biochemical Physics RAS, Kosygina 4, Moscow 119334, Russia
700    1_
$a Blahová, Lucie $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic $1 https://orcid.org/0000000262982228
700    1_
$a Eliáš, Marek $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic
700    1_
$a Zajíčková, Lenka $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic $1 https://orcid.org/0000000269068906
700    1_
$a Kovalskii, Andrey M $u Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky Prospekt 4, Moscow 119049, Russia
700    1_
$a Sheveyko, Alexander N $u Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky Prospekt 4, Moscow 119049, Russia
700    1_
$a Kiryukhantsev-Korneev, Philipp V $u Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky Prospekt 4, Moscow 119049, Russia $1 https://orcid.org/0000000316354746
700    1_
$a Shtansky, Dmitry V $u Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky Prospekt 4, Moscow 119049, Russia $1 https://orcid.org/0000000173042461
700    1_
$a Nečas, David $u Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic $1 https://orcid.org/0000000177318453 $7 xx0209867
700    1_
$a Solovieva, Anastasiya O $u Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia $1 https://orcid.org/0000000277408456
773    0_
$w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 27, č. 4 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35209122 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506131013 $b ABA008
999    __
$a ok $b bmc $g 1788880 $s 1162184
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 27 $c 4 $e 20220216 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
GRA    __
$a 20-52-26020 $p Russian Foundation for Basic Research
GRA    __
$a 21-12132J $p Czech Science Foundation
GRA    __
$a LM2018110 $p MEYS CR
GRA    __
$a "Biomedical materials and bioengineering" $p Strategic Academic Leadership Program "Priority 2030" at NUST «MISiS»
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...