• Je něco špatně v tomto záznamu ?

Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma

E. Karaca Atabay, C. Mecca, Q. Wang, C. Ambrogio, I. Mota, N. Prokoph, G. Mura, C. Martinengo, E. Patrucco, G. Leonardi, J. Hossa, A. Pich, L. Mologni, C. Gambacorti-Passerini, L. Brugières, B. Geoerger, SD. Turner, C. Voena, TC. Cheong, R. Chiarle

. 2022 ; 139 (5) : 717-731. [pub] 20220203

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22011066

Grantová podpora
R01 CA196703 NCI NIH HHS - United States

Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22011066
003      
CZ-PrNML
005      
20220506125821.0
007      
ta
008      
220425s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1182/blood.2020008136 $2 doi
035    __
$a (PubMed)34657149
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Karaca Atabay, Elif $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
245    10
$a Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma / $c E. Karaca Atabay, C. Mecca, Q. Wang, C. Ambrogio, I. Mota, N. Prokoph, G. Mura, C. Martinengo, E. Patrucco, G. Leonardi, J. Hossa, A. Pich, L. Mologni, C. Gambacorti-Passerini, L. Brugières, B. Geoerger, SD. Turner, C. Voena, TC. Cheong, R. Chiarle
520    9_
$a Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
650    _2
$a anaplastická lymfomová kináza $x antagonisté a inhibitory $x metabolismus $7 D000077548
650    _2
$a zvířata $7 D000818
650    _2
$a protinádorové látky $x farmakologie $7 D000970
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a krizotinib $x farmakologie $7 D000077547
650    _2
$a lidé $7 D006801
650    _2
$a anaplastický velkobuněčný lymfom $x farmakoterapie $x metabolismus $7 D017728
650    _2
$a myši inbrední NOD $7 D016688
650    _2
$a myši SCID $7 D016513
650    _2
$a inhibitory proteinkinas $x farmakologie $7 D047428
650    _2
$a tyrosinfosfatasa nereceptorového typu 1 $x metabolismus $7 D054562
650    _2
$a tyrosinfosfatasa nereceptorového typu 2 $x metabolismus $7 D054578
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mecca, Carmen $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA $1 https://orcid.org/0000000267705094
700    1_
$a Wang, Qi $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA $1 https://orcid.org/0000000243063293
700    1_
$a Ambrogio, Chiara $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy $1 https://orcid.org/000000034122701X
700    1_
$a Mota, Ines $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA $1 https://orcid.org/0000000315237134
700    1_
$a Prokoph, Nina $u Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom $1 https://orcid.org/0000000264299895
700    1_
$a Mura, Giulia $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
700    1_
$a Martinengo, Cinzia $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
700    1_
$a Patrucco, Enrico $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy $1 https://orcid.org/0000000180605058
700    1_
$a Leonardi, Giulia $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
700    1_
$a Hossa, Jessica $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
700    1_
$a Pich, Achille $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy $1 https://orcid.org/0000000331757797
700    1_
$a Mologni, Luca $u Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy $1 https://orcid.org/0000000263655149
700    1_
$a Gambacorti-Passerini, Carlo $u Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy $1 https://orcid.org/000000016058515X
700    1_
$a Brugières, Laurence $u Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France $1 https://orcid.org/0000000277986651
700    1_
$a Geoerger, Birgit $u Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France $u Department of Oncology for Children and Adolescents, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8203, Villejuif, France; and
700    1_
$a Turner, Suzanne D $u Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Voena, Claudia $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy $1 https://orcid.org/0000000213241431
700    1_
$a Cheong, Taek-Chin $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA $1 https://orcid.org/0000000209399412
700    1_
$a Chiarle, Roberto $u Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA $u Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy $1 https://orcid.org/0000000315648531
773    0_
$w MED00000807 $t Blood $x 1528-0020 $g Roč. 139, č. 5 (2022), s. 717-731
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34657149 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506125813 $b ABA008
999    __
$a ok $b bmc $g 1788920 $s 1162264
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 139 $c 5 $d 717-731 $e 20220203 $i 1528-0020 $m Blood $n Blood $x MED00000807
GRA    __
$a R01 CA196703 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...