Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters

J. Reindl, P. Kundrat, S. Girst, M. Sammer, B. Schwarz, G. Dollinger

. 2022 ; 12 (1) : 1305. [pub] 20220125

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22011271

Grantová podpora
Transnational access programm RADIATe European Union
Cluster of excellence MAP Deutsche Forschungsgemeinschaft

The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using γH2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the γH2AX IRIF of ~ 0.6 μm, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of ~ 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm ± 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET = 116 keV/μm) and 27 MeV carbon ions (LET = 500 keV/μm). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET γ-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 μm. Lithium ions produce (1.5 ± 0.1) IRIF/μm track length, for carbon ions (2.2 ± 0.2) IRIF/μm are counted. These values are enhanced by a factor of 2-3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/μm is possible.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22011271
003      
CZ-PrNML
005      
20220506131137.0
007      
ta
008      
220425s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-022-05413-6 $2 doi
035    __
$a (PubMed)35079078
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Reindl, Judith $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany. judith.reindl@unibw.de
245    10
$a Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters / $c J. Reindl, P. Kundrat, S. Girst, M. Sammer, B. Schwarz, G. Dollinger
520    9_
$a The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using γH2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the γH2AX IRIF of ~ 0.6 μm, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of ~ 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm ± 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET = 116 keV/μm) and 27 MeV carbon ions (LET = 500 keV/μm). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET γ-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 μm. Lithium ions produce (1.5 ± 0.1) IRIF/μm track length, for carbon ions (2.2 ± 0.2) IRIF/μm are counted. These values are enhanced by a factor of 2-3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/μm is possible.
650    _2
$a biologické markery $7 D015415
650    _2
$a uhlík $x škodlivé účinky $7 D002244
650    _2
$a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
650    _2
$a oprava DNA $x účinky záření $7 D004260
650    _2
$a záření gama $x škodlivé účinky $7 D005720
650    _2
$a HeLa buňky $7 D006367
650    _2
$a těžké ionty $x škodlivé účinky $7 D020450
650    _2
$a lidé $7 D006801
650    _2
$a lineární přenos energie $7 D018499
650    _2
$a lithium $x škodlivé účinky $7 D008094
650    _2
$a fluorescenční mikroskopie $x metody $7 D008856
650    _2
$a fosforylace $x účinky záření $7 D010766
650    _2
$a proteinkinasy $x účinky záření $7 D011494
650    _2
$a dávka záření $7 D011829
650    _2
$a radiační expozice $7 D000069079
650    _2
$a radiometrie $x metody $7 D011874
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kundrat, P $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany $u Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
700    1_
$a Girst, S $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
700    1_
$a Sammer, M $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
700    1_
$a Schwarz, B $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
700    1_
$a Dollinger, G $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 12, č. 1 (2022), s. 1305
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35079078 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506131129 $b ABA008
999    __
$a ok $b bmc $g 1789058 $s 1162469
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 12 $c 1 $d 1305 $e 20220125 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a Transnational access programm RADIATe $p European Union
GRA    __
$a Cluster of excellence MAP $p Deutsche Forschungsgemeinschaft
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...