-
Je něco špatně v tomto záznamu ?
Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters
J. Reindl, P. Kundrat, S. Girst, M. Sammer, B. Schwarz, G. Dollinger
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Transnational access programm RADIATe
European Union
Cluster of excellence MAP
Deutsche Forschungsgemeinschaft
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2021-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2021-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2011-12-01
- MeSH
- biologické markery MeSH
- dávka záření MeSH
- dvouřetězcové zlomy DNA účinky záření MeSH
- fluorescenční mikroskopie metody MeSH
- fosforylace účinky záření MeSH
- HeLa buňky MeSH
- lidé MeSH
- lineární přenos energie MeSH
- lithium škodlivé účinky MeSH
- oprava DNA účinky záření MeSH
- proteinkinasy účinky záření MeSH
- radiační expozice MeSH
- radiometrie metody MeSH
- těžké ionty škodlivé účinky MeSH
- uhlík škodlivé účinky MeSH
- záření gama škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using γH2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the γH2AX IRIF of ~ 0.6 μm, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of ~ 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm ± 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET = 116 keV/μm) and 27 MeV carbon ions (LET = 500 keV/μm). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET γ-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 μm. Lithium ions produce (1.5 ± 0.1) IRIF/μm track length, for carbon ions (2.2 ± 0.2) IRIF/μm are counted. These values are enhanced by a factor of 2-3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/μm is possible.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011271
- 003
- CZ-PrNML
- 005
- 20220506131137.0
- 007
- ta
- 008
- 220425s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-022-05413-6 $2 doi
- 035 __
- $a (PubMed)35079078
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Reindl, Judith $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany. judith.reindl@unibw.de
- 245 10
- $a Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters / $c J. Reindl, P. Kundrat, S. Girst, M. Sammer, B. Schwarz, G. Dollinger
- 520 9_
- $a The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using γH2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the γH2AX IRIF of ~ 0.6 μm, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of ~ 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm ± 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET = 116 keV/μm) and 27 MeV carbon ions (LET = 500 keV/μm). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET γ-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 μm. Lithium ions produce (1.5 ± 0.1) IRIF/μm track length, for carbon ions (2.2 ± 0.2) IRIF/μm are counted. These values are enhanced by a factor of 2-3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/μm is possible.
- 650 _2
- $a biologické markery $7 D015415
- 650 _2
- $a uhlík $x škodlivé účinky $7 D002244
- 650 _2
- $a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
- 650 _2
- $a oprava DNA $x účinky záření $7 D004260
- 650 _2
- $a záření gama $x škodlivé účinky $7 D005720
- 650 _2
- $a HeLa buňky $7 D006367
- 650 _2
- $a těžké ionty $x škodlivé účinky $7 D020450
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lineární přenos energie $7 D018499
- 650 _2
- $a lithium $x škodlivé účinky $7 D008094
- 650 _2
- $a fluorescenční mikroskopie $x metody $7 D008856
- 650 _2
- $a fosforylace $x účinky záření $7 D010766
- 650 _2
- $a proteinkinasy $x účinky záření $7 D011494
- 650 _2
- $a dávka záření $7 D011829
- 650 _2
- $a radiační expozice $7 D000069079
- 650 _2
- $a radiometrie $x metody $7 D011874
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kundrat, P $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany $u Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
- 700 1_
- $a Girst, S $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
- 700 1_
- $a Sammer, M $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
- 700 1_
- $a Schwarz, B $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
- 700 1_
- $a Dollinger, G $u Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 12, č. 1 (2022), s. 1305
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35079078 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506131129 $b ABA008
- 999 __
- $a ok $b bmc $g 1789058 $s 1162469
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 12 $c 1 $d 1305 $e 20220125 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- GRA __
- $a Transnational access programm RADIATe $p European Union
- GRA __
- $a Cluster of excellence MAP $p Deutsche Forschungsgemeinschaft
- LZP __
- $a Pubmed-20220425