-
Je něco špatně v tomto záznamu ?
Geometrical model of lobular structure and its importance for the liver perfusion analysis
E. Rohan, J. Camprová Turjanicová, V. Liška
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- anatomické modely * MeSH
- biologické modely MeSH
- játra anatomie a histologie krevní zásobení MeSH
- lidé MeSH
- mikrocirkulace MeSH
- ověření koncepční studie MeSH
- perfuze MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A convenient geometrical description of the microvascular network is necessary for computationally efficient mathematical modelling of liver perfusion, metabolic and other physiological processes. The tissue models currently used are based on the generally accepted schematic structure of the parenchyma at the lobular level, assuming its perfect regular structure and geometrical symmetries. Hepatic lobule, portal lobule, or liver acinus are considered usually as autonomous functional units on which particular physiological problems are studied. We propose a new periodic unit-the liver representative periodic cell (LRPC) and establish its geometrical parametrization. The LRPC is constituted by two portal lobulae, such that it contains the liver acinus as a substructure. As a remarkable advantage over the classical phenomenological modelling approaches, the LRPC enables for multiscale modelling based on the periodic homogenization method. Derived macroscopic equations involve so called effective medium parameters, such as the tissue permeability, which reflect the LRPC geometry. In this way, mutual influences between the macroscopic phenomena, such as inhomogeneous perfusion, and the local processes relevant to the lobular (mesoscopic) level are respected. The LRPC based model is intended for its use within a complete hierarchical model of the whole liver. Using the Double-permeability Darcy model obtained by the homogenization, we illustrate the usefulness of the LRPC based modelling to describe the blood perfusion in the parenchyma.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011757
- 003
- CZ-PrNML
- 005
- 20220506131050.0
- 007
- ta
- 008
- 220425s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0260068 $2 doi
- 035 __
- $a (PubMed)34855778
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Rohan, Eduard $u Department of Mechanics, Faculty of Applied Sciences, NTIS - New Technologies for Information Society, University of West Bohemia, Pilsen, Czech Republic $1 https://orcid.org/0000000203004600
- 245 10
- $a Geometrical model of lobular structure and its importance for the liver perfusion analysis / $c E. Rohan, J. Camprová Turjanicová, V. Liška
- 520 9_
- $a A convenient geometrical description of the microvascular network is necessary for computationally efficient mathematical modelling of liver perfusion, metabolic and other physiological processes. The tissue models currently used are based on the generally accepted schematic structure of the parenchyma at the lobular level, assuming its perfect regular structure and geometrical symmetries. Hepatic lobule, portal lobule, or liver acinus are considered usually as autonomous functional units on which particular physiological problems are studied. We propose a new periodic unit-the liver representative periodic cell (LRPC) and establish its geometrical parametrization. The LRPC is constituted by two portal lobulae, such that it contains the liver acinus as a substructure. As a remarkable advantage over the classical phenomenological modelling approaches, the LRPC enables for multiscale modelling based on the periodic homogenization method. Derived macroscopic equations involve so called effective medium parameters, such as the tissue permeability, which reflect the LRPC geometry. In this way, mutual influences between the macroscopic phenomena, such as inhomogeneous perfusion, and the local processes relevant to the lobular (mesoscopic) level are respected. The LRPC based model is intended for its use within a complete hierarchical model of the whole liver. Using the Double-permeability Darcy model obtained by the homogenization, we illustrate the usefulness of the LRPC based modelling to describe the blood perfusion in the parenchyma.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a játra $x anatomie a histologie $x krevní zásobení $7 D008099
- 650 _2
- $a mikrocirkulace $7 D008833
- 650 12
- $a anatomické modely $7 D008953
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a perfuze $7 D010477
- 650 _2
- $a ověření koncepční studie $7 D000075082
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Camprová Turjanicová, Jana $u Department of Mechanics, Faculty of Applied Sciences, NTIS - New Technologies for Information Society, University of West Bohemia, Pilsen, Czech Republic
- 700 1_
- $a Liška, Václav $u Biomedical Center, Faculty of Medicine, Charles University Pilsen, Pilsen, Czech Republic
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 16, č. 12 (2021), s. e0260068
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34855778 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506131042 $b ABA008
- 999 __
- $a ok $b bmc $g 1789380 $s 1162955
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 16 $c 12 $d e0260068 $e 20211202 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20220425