• Je něco špatně v tomto záznamu ?

A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion

F. Witte, J. Ruiz-Orera, CC. Mattioli, S. Blachut, E. Adami, JF. Schulz, V. Schneider-Lunitz, O. Hummel, G. Patone, MB. Mücke, J. Šilhavý, M. Heinig, L. Bottolo, D. Sanchis, M. Vingron, M. Chekulaeva, M. Pravenec, N. Hubner, S. van Heesch

. 2021 ; 22 (1) : 191. [pub] 20210628

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22012390

BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22012390
003      
CZ-PrNML
005      
20220506130322.0
007      
ta
008      
220425s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13059-021-02397-w $2 doi
035    __
$a (PubMed)34183069
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Witte, Franziska $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany $u Present Address: NUVISAN ICB GmbH, Lead Discovery-Structrual Biology, 13353, Berlin, Germany
245    12
$a A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion / $c F. Witte, J. Ruiz-Orera, CC. Mattioli, S. Blachut, E. Adami, JF. Schulz, V. Schneider-Lunitz, O. Hummel, G. Patone, MB. Mücke, J. Šilhavý, M. Heinig, L. Bottolo, D. Sanchis, M. Vingron, M. Chekulaeva, M. Pravenec, N. Hubner, S. van Heesch
520    9_
$a BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
650    _2
$a zvířata $7 D000818
650    _2
$a kardiomegalie $x genetika $x metabolismus $x patologie $7 D006332
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a genetická variace $7 D014644
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a myši knockoutované $7 D018345
650    _2
$a myokard $x metabolismus $x patologie $7 D009206
650    _2
$a biogeneze organel $7 D001678
650    12
$a iniciace translace peptidového řetězce $7 D010442
650    12
$a lokus kvantitativního znaku $7 D040641
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
650    _2
$a malá jadérková RNA $x genetika $x metabolismus $7 D020537
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani inbrední SHR $7 D011918
650    _2
$a potkani transgenní $7 D055647
650    _2
$a ribozomální proteiny $x genetika $x metabolismus $7 D012269
650    _2
$a ribozomy $x genetika $x metabolismus $x patologie $7 D012270
650    _2
$a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
650    _2
$a sarkomery $x metabolismus $x patologie $7 D012518
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ruiz-Orera, Jorge $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
700    1_
$a Mattioli, Camilla Ciolli $u Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany $u Present Address: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
700    1_
$a Blachut, Susanne $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
700    1_
$a Adami, Eleonora $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany $u Present Address: Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
700    1_
$a Schulz, Jana Felicitas $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
700    1_
$a Schneider-Lunitz, Valentin $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
700    1_
$a Hummel, Oliver $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
700    1_
$a Patone, Giannino $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
700    1_
$a Mücke, Michael Benedikt $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany $u DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany $u Charité-Universitätsmedizin, 10117, Berlin, Germany
700    1_
$a Šilhavý, Jan $u Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Praha, Czech Republic
700    1_
$a Heinig, Matthias $u Institute of Computational Biology (ICB), HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Munich, Germany $u Department of Informatics, Technische Universitaet Muenchen (TUM), Boltzmannstr. 3, 85748 Garching, Munich, Germany
700    1_
$a Bottolo, Leonardo $u Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK $u The Alan Turing Institute, London, NW1 2DB, UK $u MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
700    1_
$a Sanchis, Daniel $u Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Universitat de Lleida, Edifici Biomedicina-I. Av. Rovira Roure, 80, 25198, Lleida, Spain
700    1_
$a Vingron, Martin $u Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
700    1_
$a Chekulaeva, Marina $u Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
700    1_
$a Pravenec, Michal $u Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Praha, Czech Republic
700    1_
$a Hubner, Norbert $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany. nhuebner@mdc-berlin.de $u DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany. nhuebner@mdc-berlin.de $u Charité-Universitätsmedizin, 10117, Berlin, Germany. nhuebner@mdc-berlin.de
700    1_
$a van Heesch, Sebastiaan $u Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany. s.vanheesch@prinsesmaximacentrum.nl $u Present Address: The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands. s.vanheesch@prinsesmaximacentrum.nl $1 https://orcid.org/0000000195931980
773    0_
$w MED00006605 $t Genome biology $x 1474-760X $g Roč. 22, č. 1 (2021), s. 191
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34183069 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130314 $b ABA008
999    __
$a ok $b bmc $g 1789824 $s 1163591
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 22 $c 1 $d 191 $e 20210628 $i 1474-760X $m Genome biology $n Genome Biol $x MED00006605
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...