Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study

V. Ravano, M. Andelova, MJ. Fartaria, MFA. Mahdi, B. Maréchal, R. Meuli, T. Uher, J. Krasensky, M. Vaneckova, D. Horakova, T. Kober, J. Richiardi

. 2021 ; 32 (-) : 102817. [pub] 20210902

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22012577

The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22012577
003      
CZ-PrNML
005      
20220506131317.0
007      
ta
008      
220425s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.nicl.2021.102817 $2 doi
035    __
$a (PubMed)34500427
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Ravano, Veronica $u Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. Electronic address: veronica.ravano@epfl.ch
245    10
$a Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study / $c V. Ravano, M. Andelova, MJ. Fartaria, MFA. Mahdi, B. Maréchal, R. Meuli, T. Uher, J. Krasensky, M. Vaneckova, D. Horakova, T. Kober, J. Richiardi
520    9_
$a The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.
650    _2
$a algoritmy $7 D000465
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a zobrazování difuzních tenzorů $7 D056324
650    _2
$a lidé $7 D006801
650    12
$a roztroušená skleróza $x diagnostické zobrazování $7 D009103
650    _2
$a retrospektivní studie $7 D012189
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Andelova, Michaela $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Fartaria, Mário João $u Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
700    1_
$a Mahdi, Mazen Fouad A-Wali $u Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
700    1_
$a Maréchal, Bénédicte $u Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
700    1_
$a Meuli, Reto $u Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
700    1_
$a Uher, Tomas $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Krasensky, Jan $u MR unit, Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Vaneckova, Manuela $u MR unit, Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Horakova, Dana $u Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Kober, Tobias $u Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
700    1_
$a Richiardi, Jonas $u Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
773    0_
$w MED00188130 $t NeuroImage. Clinical $x 2213-1582 $g Roč. 32, č. - (2021), s. 102817
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34500427 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506131309 $b ABA008
999    __
$a ok $b bmc $g 1789974 $s 1163778
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 32 $c - $d 102817 $e 20210902 $i 2213-1582 $m NeuroImage. Clinical $n Neuroimage Clin $x MED00188130
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...