-
Something wrong with this record ?
Progress in the drug encapsulation of poly(lactic-co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) conjugates for selective cancer treatment
JM. Dodda, T. Remiš, S. Rotimi, YC. Yeh
Language English Country Great Britain
Document type Journal Article, Review, Research Support, Non-U.S. Gov't
PubMed
35593381
DOI
10.1039/d2tb00469k
Knihovny.cz E-resources
- MeSH
- Polylactic Acid-Polyglycolic Acid Copolymer MeSH
- Folic Acid chemistry MeSH
- Humans MeSH
- Neoplasms * MeSH
- Nanoparticles * chemistry MeSH
- Drug Carriers chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- United States MeSH
Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22018038
- 003
- CZ-PrNML
- 005
- 20220804134523.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1039/d2tb00469k $2 doi
- 035 __
- $a (PubMed)35593381
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Dodda, Jagan Mohan $u New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic. jagan@ntc.zcu.cz $1 https://orcid.org/0000000184703894
- 245 10
- $a Progress in the drug encapsulation of poly(lactic-co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) conjugates for selective cancer treatment / $c JM. Dodda, T. Remiš, S. Rotimi, YC. Yeh
- 520 9_
- $a Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
- 650 _2
- $a nosiče léků $x chemie $7 D004337
- 650 _2
- $a kyselina listová $x chemie $7 D005492
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a nanočástice $x chemie $7 D053758
- 650 12
- $a nádory $7 D009369
- 650 _2
- $a polyethylenglykoly $x chemie $7 D011092
- 650 _2
- $a kopolymer kyseliny glykolové a mléčné $7 D000077182
- 651 _2
- $a Spojené státy americké $7 D014481
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Remiš, Tomáš $u New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic. jagan@ntc.zcu.cz $1 https://orcid.org/0000000188251514
- 700 1_
- $a Rotimi, Sadiku $u Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, 0183, Pretoria West Campus, South Africa $1 https://orcid.org/0000000285041041
- 700 1_
- $a Yeh, Yi-Cheun $u Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan $1 https://orcid.org/0000000345768665
- 773 0_
- $w MED00200167 $t Journal of materials chemistry. B $x 2050-7518 $g Roč. 10, č. 22 (2022), s. 4127-4141
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35593381 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804134517 $b ABA008
- 999 __
- $a ok $b bmc $g 1821892 $s 1169281
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 10 $c 22 $d 4127-4141 $e 20220608 $i 2050-7518 $m Journal of materials chemistry. B $n J Mater Chem B $x MED00200167
- LZP __
- $a Pubmed-20220720